European Journal of Chemistry

Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds

Crossmark


Main Article Content

Kikuko Iida
Rei Sakamoto
Kun Li
Miyuki Kobayashi
Hiroaki Iitsuka
Noriyuki Yonezawa
Akiko Okamoto

Abstract

The title compound lies about a crystallographic inversion centre located at the terephthalate moiety. The two peri-benzoylnaphthalene units having atrope chirality are also situated centrosymmetrically. In the two peri-benzoylnaphthalene moieties, two benzoyl groups are substituted at 1 and 8 carbons of the naphthalene ring in anti-orientation. Then two absolute configurations of peri-benzoylnaphthalene moieties are consequently assigned as complementary to each other, i.e., one unit has R,R-configuration and the other S,S-one, respectively. The two benzoyl groups in peri-benzoylnaphthalene moiety and the terephthalate phenylene ring are non-coplanarly located against the naphthalene ring. The dihedral angles of each benzene ring of two benzoyl groups and terephthalate unit with the naphthalene ring are 73.73 and 75.96, and 71.79°. In molecular packing, several kinds of weak interactions are responsible to induce three-dimensional molecular network. Especially, the synergetic effect realized through the bidentate hydrogen acceptor function in bidirectional C-H···π non-classical hydrogen bonds by the terephthalate phenylene ring moiety plausibly plays the determining role.


icon graph This Abstract was viewed 1087 times | icon graph Article PDF downloaded 405 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Iida, K.; Sakamoto, R.; Li, K.; Kobayashi, M.; Iitsuka, H.; Yonezawa, N.; Okamoto, A. Crystal Structure of bis(1,8-Dibenzoyl-7-Methoxynaphthalen-2-yl)terephthalate: Terephthalate Phenylene Moiety Acts As Bidentate Hydrogen Acceptor of Bidirectional C-H···π Non-Classical Hydrogen Bonds. Eur. J. Chem. 2021, 12, 147-153.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Desiraju, G. R. Acc. Chem. Res. 1991, 24 (10), 290-296.
https://doi.org/10.1021/ar00010a002

[2]. Desiraju, G. R. Acc. Chem. Res. 1996, 29 (9), 441-449.
https://doi.org/10.1021/ar950135n

[3]. Steiner, T. Chem. Commun. (Camb.) 1997, No. 8, 727-734.
https://doi.org/10.1039/a603049a

[4]. Dang, L.-L.; Feng, H.-J.; Lin, Y.-J.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142 (44), 18946-18954.
https://doi.org/10.1021/jacs.0c09162

[5]. Gao, Y.; Yin, Q.; Wang, Q.; Li, Z.; Cai, J.; Zhao, T.; Lei, H.; Wang, S.; Zhang, Y.; Shen, B. Adv. Mater. 2020, 32 (48), e2005228.
https://doi.org/10.1002/adma.202005228

[6]. Desiraju, G. R. J. Mol. Struct. 2003, 656 (1-3), 5-15.
https://doi.org/10.1016/S0022-2860(03)00354-5

[7]. Desiraju, G. R. Cryst. Growth Des. 2011, 11 (4), 896-898.
https://doi.org/10.1021/cg200100m

[8]. Aakeröy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22 (6), 397-407.
https://doi.org/10.1039/CS9932200397

[9]. Desiraju, G. R. C. E. The Design of Organic Solids; Elsevier: Amsterdam, 1989.

[10]. Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34 (21), 2311-2327.
https://doi.org/10.1002/anie.199523111

[11]. Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogoshi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138 (20), 6617-6628.
https://doi.org/10.1021/jacs.6b02968

[12]. Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Cryst. Growth Des. 2016, 16 (3), 1626-1635.
https://doi.org/10.1021/acs.cgd.5b01724

[13]. Budiman, Y. P.; Jayaraman, A.; Friedrich, A.; Kerner, F.; Radius, U.; Marder, T. B. J. Am. Chem. Soc. 2020, 142 (13), 6036-6050.
https://doi.org/10.1021/jacs.9b11871

[14]. Bondue, C. J.; Koper, M. T. M. J. Am. Chem. Soc. 2019, 141 (30), 12071-12078.
https://doi.org/10.1021/jacs.9b05397

[15]. Elsberg, J. G. D.; Anderson, S. N.; Tierney, D. L.; Reinheimer, E. W.; Berreau, L. M. Dalton Trans. 2021, 50 (5), 1712-1720.
https://doi.org/10.1039/D0DT04074F

[16]. Wozniak, D. I.; Hicks, A. J.; Sabbers, W. A.; Dobereiner, G. E. Dalton Trans. 2019, 48 (37), 14138-14155.
https://doi.org/10.1039/C9DT03511G

[17]. Kang, C.; Zhang, Z.; Wee, V.; Usadi, A. K.; Calabro, D. C.; Baugh, L. S.; Wang, S.; Wang, Y.; Zhao, D. J. Am. Chem. Soc. 2020, 142 (30), 12995-13002.
https://doi.org/10.1021/jacs.0c03691

[18]. Dionne, E. R.; Dip, C.; Toader, V.; Badia, A. J. Am. Chem. Soc. 2018, 140 (32), 10063-10066.
https://doi.org/10.1021/jacs.8b04054

[19]. Tian, X.; Xin, X.; Gao, Y.; Han, Z. CrystEngComm 2018, 20 (11), 1588-1596.
https://doi.org/10.1039/C8CE00026C

[20]. Gargallo, R.; Aviñó, A.; Eritja, R.; Jarosova, P.; Mazzini, S.; Scaglioni, L.; Taborsky, P. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248 (119185), 119185.
https://doi.org/10.1016/j.saa.2020.119185

[21]. Gomez-Jeria, J. S.; Robles-Navarro, A.; Kpotin, G. A.; Garro-Saez, N.; Gatica-Diaz, N. Chem. Res. J. 2020, 5 (2), 32-52. https://chemrj.org/download/vol-5-iss-2-2020/chemrj-2020-05-02-32-52.pdf (accessed Apr 17, 2021).

[22]. Hahn, R.; Bohle, F.; Fang, W.; Walther, A.; Grimme, S.; Esser, B. J. Am. Chem. Soc. 2018, 140 (51), 17932-17944.
https://doi.org/10.1021/jacs.8b08823

[23]. Zuniga, M. A.; Alderete, J. B.; Jaña, G. A.; Jiménez, V. A. J. Comput. Aided Mol. Des. 2017, 31 (7), 643-652.
https://doi.org/10.1007/s10822-017-0029-2

[24]. Avdeeva, V. V.; Vologzhanina, A. V.; Ugolkova, E. A.; Minin, V. V.; Malinina, E. A.; Kuznetsov, N. T. J. Solid State Chem. 2021, 296 (121989), 121989.
https://doi.org/10.1016/j.jssc.2021.121989

[25]. Kikkawa, S.; Okayasu, M.; Hikawa, H.; Azumaya, I. Cryst. Growth Des. 2021, 21 (2), 1148-1158.
https://doi.org/10.1021/acs.cgd.0c01469

[26]. Kataeva, O.; Nohr, M.; Ivshin, K.; Hampel, S.; Büchner, B.; Knupfer, M. Cryst. Growth Des. 2021, 21 (1), 471-481.
https://doi.org/10.1021/acs.cgd.0c01287

[27]. Awwadi, F. F.; Taher, D.; Kailani, M. H.; Alwahsh, M. I.; Odeh, F.; Rüffer, T.; Schaarschmidt, D.; Lang, H. Cryst. Growth Des. 2020, 20 (2), 543-551.
https://doi.org/10.1021/acs.cgd.9b00408

[28]. Zeng, C.-H.; Wu, H.; Luo, Z.; Yao, J. CrystEngComm 2018, 20 (8), 1123-1129.
https://doi.org/10.1039/C7CE02098H

[29]. Steiner, T.; Desiraju, G. R. Chem. Commun. (Camb.) 1998, No. 8, 891-892.
https://doi.org/10.1039/a708099i

[30]. Desiraju, G. R. Chem. Commun. (Camb.) 2005, No. 24, 2995-3001.
https://doi.org/10.1039/b504372g

[31]. Okamoto, A.; Yonezawa, N. J. Synth. Org. Chem. Japan 2015, 73 (4), 339-360.
https://doi.org/10.5059/yukigoseikyokaishi.73.339

[32]. Okamoto, A.; Yonezawa, N. Chem. Lett. 2009, 38 (9), 914-915.
https://doi.org/10.1246/cl.2009.914

[33]. Okamoto, A.; Mitsui, R.; Oike, H.; Yonezawa, N. Chem. Lett. 2011, 40 (11), 1283-1284.
https://doi.org/10.1246/cl.2011.1283

[34]. Okamoto, A.; Mitsui, R.; Watanabe, S.; Tsubouchi, T.; Yonezawa, N. Int. J. Org. Chem. (Irvine) 2012, 02 (03), 194-201.
https://doi.org/10.4236/ijoc.2012.23029

[35]. Ogata, K.; Mido, T.; Siqingaowa; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2019, 48 (12), 1522-1525.
https://doi.org/10.1246/cl.190663

[36]. Mido, T.; Iitsuka, H.; Kobayashi, M.; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2020, 49 (3), 295-298.
https://doi.org/10.1246/cl.190903

[37]. Nakaema, K.; Watanabe, S.; Okamoto, A.; Noguchi, K.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64 (Pt 5), o807.
https://doi.org/10.1107/S1600536808007009

[38]. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition; Reed Educational and Professional Publishing Ltd: Oxford, 1996.

[39]. Domasevitch, K. V.; Solntsev, P. V.; Krautscheid, H.; Zhylenko, I. S.; Rusanov, E. B.; Chernega, A. N. Chem. Commun. (Camb.) 2012, 48 (47), 5847-5849.
https://doi.org/10.1039/c2cc31770b

[40]. Kato, Y.; Nagasawa, A.; Hijikata, D.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2659-o2659.
https://doi.org/10.1107/S1600536810038195

[41]. Nagasawa, A.; Mitsui, R.; Kato, Y.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2677-o2677.
https://doi.org/10.1107/S1600536810038547

[42]. Rigaku. PROCESS‐AUTO. Rigaku Corporation, Tokyo, Japan, 1998.

[43]. Rigaku. CrystalStructure. Rigaku Corporation, Tokyo, Japan, 2010.

[44]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Crystallogr. 2007, 40 (3), 609-613.
https://doi.org/10.1107/S0021889807010941

[45]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).