European Journal of Chemistry

Synthesis and in vitro drug release of primaquine phosphate loaded PLGA nanoparticles

Crossmark


Main Article Content

Bharat Patel
Satyendra Kumar Tripathi
Sandhya Pathak
Sandeep Shukla
Archna Pandey

Abstract

Plasmodium falciparum is one of the most common resistant Plasmodium species responsible for high rates of morbidity and mortality in malaria patients. Clinical guidelines for the management of Plasmodium falciparum include the use of a dose of primaquine phosphate resulting intolerable side effects. Therefore, the aim of this work was to formulate primaquine phosphate-loaded PLGA nanoparticles by using a nanoprecipitation method in order to increase its bioavailability to minimize drug intake. This leads to reduced toxicity and better therapeutic efficacy of the drug. The synthesized nanoparticles were characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transformed infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD). TEM analysis revealed the presence of smooth spherical-shaped nanoparticles. The drug DLS analysis confirmed the presence of negatively charged nanoparticles with particle size in the range of 100-400 nm. The drug release study was performed to analyses different kinetic models like zero-order model, first-order model, Higuchi model, Hixson-Crowell model, and Korsmeyer-Peppas model.


icon graph This Abstract was viewed 798 times | icon graph Article PDF downloaded 271 times

How to Cite
(1)
Patel, B.; Tripathi, S. K.; Pathak, S.; Shukla, S.; Pandey, A. Synthesis and in Vitro Drug Release of Primaquine Phosphate Loaded PLGA Nanoparticles. Eur. J. Chem. 2021, 12, 482-487.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. World Health Organization. World Malaria Report 2019; World Health Organization: Genève, Switzerland, 2019.

[2]. Tripathy, S.; Das, S.; Chakraborty, S. P.; Sahu, S. K.; Pramanik, P.; Roy, S. Int. J. Pharm. 2012, 434 (1-2), 292-305.
https://doi.org/10.1016/j.ijpharm.2012.05.064

[3]. Bagheri, A. R.; Golenser, J.; Greiner, A. Eur. Polym. J. 2020, 129 (109625), 109625.
https://doi.org/10.1016/j.eurpolymj.2020.109625

[4]. Masiiwa, W. L.; Gadaga, L. L. J. Drug Deliv. 2018, 2018, 3021738.
https://doi.org/10.1155/2018/3021738

[5]. Mangrio, F. A.; Dwivedi, P.; Han, S.; Zhao, G.; Gao, D.; Si, T.; Xu, R. X. Mol. Pharm. 2017, 14 (12), 4725-4733.
https://doi.org/10.1021/acs.molpharmaceut.7b00862

[6]. Urista, D. V.; Carrué, D. B.; Otero, I.; Arrasate, S.; Quevedo-Tumailli, V. F.; Gestal, M.; González-Díaz, H.; Munteanu, C. R. Biology (Basel) 2020, 9 (8), 198.
https://doi.org/10.3390/biology9080198

[7]. Surolia, R.; Pachauri, M.; Ghosh, P. C. J. Biomed. Nanotechnol. 2012, 8 (1), 172-181.
https://doi.org/10.1166/jbn.2012.1366

[8]. Kumari, A.; Yadav, S. K.; Yadav, S. C. Colloids Surf. B Biointerfaces 2010, 75 (1), 1-18.
https://doi.org/10.1016/j.colsurfb.2009.09.001

[9]. Bohrey, S.; Chourasiya, V.; Pandey, A. Nano Converg. 2016, 3 (1). https://doi.org/10.1186/s40580-016-0061-2.
https://doi.org/10.1186/s40580-016-0061-2

[10]. Gathirwa, J. W.; Omwoyo, W.; Ogutu, B.; Oloo, F.; Swai, H.; Kalombo, L.; Melariri, P.; Maroa, G. Int. J. Nanomedicine 2014, 9 (1), 3865-3874.
https://doi.org/10.2147/IJN.S62630

[11]. Gupta, N.; Rajera, R.; Nagpal, M.; Arora, S. Pharm. Nanotechnol. 2012, 1 (1), 35-43.
https://doi.org/10.2174/2211738511301010035

[12]. Kumar, H.; Gothwal, A.; Khan, I.; Nakhate, K. T.; Alexander, A.; Ajazuddin; Singh, V.; Gupta, U. Mol. Pharm. 2017, 14 (10), 3356-3369.
https://doi.org/10.1021/acs.molpharmaceut.7b00376

[13]. Baruah, U. K.; Gowthamarajan, K.; Ravisankar, V.; Karri, V. V. S. R.; Simhadri, P. K.; Singh, V.; Babu, P. P. Artif. Cells Nanomed. Biotechnol. 2018, 46 (8), 1809-1829.

[14]. Tripathy, S.; Mahapatra, S. K.; Chattopadhyay, S.; Das, S.; Dash, S. K.; Majumder, S.; Pramanik, P.; Roy, S. Acta Trop. 2013, 128 (3), 494-503.
https://doi.org/10.1016/j.actatropica.2013.07.011

[15]. Tiwari, R.; Aharwal, R. P.; Shukla, S.; Pandey, A. Int. J. Pharm. Sci. Res. 2014, 5 (5), 1661-1670.

[16]. Bohrey, S.; Chourasiya, V.; Pandey, A. Polym. Sci. Ser. A 2016, 58 (6), 975-986.
https://doi.org/10.1134/S0965545X1606002X

[17]. Baradaran Eftekhari, R.; Maghsoudnia, N.; Dorkoosh, F. A. Expert Opin. Drug Deliv. 2020, 17 (3), 275-277.
https://doi.org/10.1080/17425247.2020.1716729

[18]. Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Kiafar, F.; Jelvehgari, M. Jundishapur J. Nat. Pharm. Prod. 2018, 13 (4), e12873.
https://doi.org/10.5812/jjnpp.12873

[19]. Alshamsan, A. Saudi Pharm. J. 2014, 22 (3), 219-222.
https://doi.org/10.1016/j.jsps.2013.12.002

[20]. Busari, Z. A.; Dauda, K. A.; Morenikeji, O. A.; Afolayan, F.; Oyeyemi, O. T.; Meena, J.; Sahu, D.; Panda, A. K. Front. Pharmacol. 2017, 8, 622.
https://doi.org/10.3389/fphar.2017.00622

[21]. Haider, T.; Pandey, V.; Behera, C.; Kumar, P.; Gupta, P. N.; Soni, V. J. Drug Deliv. Sci. Technol. 2020, 60 (102087), 102087.
https://doi.org/10.1016/j.jddst.2020.102087

[22]. Kashi, T. S. J.; Eskandarion, S.; Esfandyari-Manesh, M.; Marashi, S. M. A.; Samadi, N.; Fatemi, S. M.; Atyabi, F.; Eshraghi, S.; Dinarvand, R. Int. J. Nanomedicine 2012, 7, 221-234.

[23]. Venkatesh, D. N.; Baskaran, M.; Karri, V. V. S. R.; Mannemala, S. S.; Radhakrishna, K.; Goti, S. Saudi Pharm. J. 2015, 23 (6), 667-674.
https://doi.org/10.1016/j.jsps.2015.02.021

[24]. Ho, H. N.; Tran, T. H.; Tran, T. B.; Yong, C. S.; Nguyen, C. N. J. Nanomater. 2015, 2015, 1-12.
https://doi.org/10.1155/2015/674175

[25]. Anwer, M. K.; Al-Mansoor, M. A.; Jamil, S.; Al-Shdefat, R.; Ansari, M. N.; Shakeel, F. Int. J. Biol. Macromol. 2016, 92, 213-219.
https://doi.org/10.1016/j.ijbiomac.2016.07.002

[26]. Anwer, M. K.; Mohammad, M.; Ezzeldin, E.; Fatima, F.; Alalaiwe, A.; Iqbal, M. Int. J. Nanomedicine 2019, 14, 1587-1595.
https://doi.org/10.2147/IJN.S195048

[27]. Izumikawa, S.; Yoshioka, S.; Aso, Y.; Takeda, Y. J. Control. Release 1991, 15 (2), 133-140.
https://doi.org/10.1016/0168-3659(91)90071-K

[28]. Tripathy, S.; Das, S.; Chakraborty, S. P.; Sahu, S. K.; Pramanik, P.; Roy, S. Int. J. Pharm. 2012, 434 (1-2), 292-305.
https://doi.org/10.1016/j.ijpharm.2012.05.064

[29]. Pan, X.; Liu, S.; Ju, L.; Xi, J.; He, R.; Zhao, Y.; Zhuang, R.; Huang, J. Drug Dev. Ind. Pharm. 2020, 46 (11), 1889-1897.
https://doi.org/10.1080/03639045.2020.1825475

Supporting Agencies

University Grand Commission, Dr. Harisingh Gour Vishwavidyalaya, Sagar 470003, India.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).