European Journal of Chemistry

Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies

Crossmark


Main Article Content

Sandhya Pathak
Sandeep Shukla
Bharat Patel
Satyendra Kumar Tripathi
Archna Pandey

Abstract

Osteoporosis is a bone disease caused due to the reducing bone mineral density. Porous and more fragile bones increase the risk of fractures. Hip, spine, shoulder, and wrist bones are commonly affected by osteoporosis. Low bone density is a leading cause of osteoporosis. The most efficient prescribed drugs for the treatment of osteoporosis are bisphosphonates drugs. Alendronate was the first FDA approved bisphosphonate drug for the treatment of osteoporosis. Osteoclast cells are the primary targeting site for alendronate, responsible for bone resorption. A biopharmaceutical classification system class III bisphosphonate acts as a potent, efficient, and bone resorption inhibitor drug. In the present study, alendronate functionalized PLGA based nanoparticles were developed by a solvent diffusion method and optimized for different process variables. The formulated nanoparticles were characterized for surface morphology, particle size distribution, surface charge and drug-polymer compatibility. The scanning electron microscopy and transmission electron microscopy results showed nanoparticle size in the range below 200 nm. The average particle size and zeta potential of the formulated nanoparticles were found to be 175.3 nm and -13.98 mV, respectively. The highest encapsulation efficiency was 65.23%. The release profile was dissolution medium dependent and followed by the Higuchi model of release kinetics.


icon graph This Abstract was viewed 573 times | icon graph Article PDF downloaded 298 times

How to Cite
(1)
Pathak, S.; Shukla, S.; Patel, B.; Tripathi, S. K.; Pandey, A. Alendronate Functionalized PLGA Based Nanoparticles for the Effective Treatment of Osteoporosis-Formulation to in-Vitro Release Kinetic Studies. Eur. J. Chem. 2022, 13, 407-414.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Rapp, K.; Rothenbacher, D.; Magaziner, J.; Becker, C.; Benzinger, P.; König, H.-H.; Jaensch, A.; Büchele, G. Risk of nursing home admission after femoral fracture compared with stroke, myocardial infarction, and pneumonia. J. Am. Med. Dir. Assoc. 2015, 16, 715.e7-715.e12.
https://doi.org/10.1016/j.jamda.2015.05.013

[2]. Mithal, A.; Bansal, B.; Kyer, C. S.; Ebeling, P. The Asia-pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: A report of international osteoporosis foundation. Indian J. Endocrinol. Metab. 2014, 18, 449-454.
https://doi.org/10.4103/2230-8210.137485

[3]. Weaver, C. M.; Alexander, D. D.; Boushey, C. J.; Dawson-Hughes, B.; Lappe, J. M.; LeBoff, M. S.; Liu, S.; Looker, A. C.; Wallace, T. C.; Wang, D. D. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367-376.
https://doi.org/10.1007/s00198-015-3386-5

[4]. Akgun, B.; Avci, D. Synthesis and evaluations of bisphosphonate-containing monomers for dental materials. J. Polym. Sci. A Polym. Chem. 2012, 50, 4854-4863.
https://doi.org/10.1002/pola.26305

[5]. Gu, W.; Wu, C.; Chen, J.; Xiao, Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int. J. Nanomedicine 2013, 8, 2305-2317.
https://doi.org/10.2147/IJN.S44393

[6]. Chourasiya, V.; Bohrey, S.; Pandey, A. Hydrochlorothiazide containing PLGA nanoparticles: Design, characterization, in-vitro drug release and release kinetic study. Polym. Sci. Ser. B 2015, 57, 645-653.
https://doi.org/10.1134/S1560090415060020

[7]. Ochiuz, L.; Grigoras, C.; Popa, M.; Stoleriu, I.; Munteanu, C.; Timofte, D.; Profire, L.; Grigoras, A. G. Alendronate-loaded modified drug delivery lipid particles intended for improved oral and topical administration. Molecules 2016, 21, 858.
https://doi.org/10.3390/molecules21070858

[8]. Jagadish, B.; Yelchuri, R.; K, B.; Tangi, H.; Maroju, S.; Rao, V. U. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem. Pharm. Bull. (Tokyo) 2010, 58, 293-300.
https://doi.org/10.1248/cpb.58.293

[9]. Fasinu, P.; Pillay, V.; Ndesendo, V. M. K.; du Toit, L. C.; Choonara, Y. E. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011, 32, 185-209.
https://doi.org/10.1002/bdd.750

[10]. Pathak, S.; Vyas, S. P.; Pandey, A. Development, characterization and in vitro release kinetic studies of Ibandronate loaded chitosan nanoparticles for effective management of osteoporosis. Int. J. Appl. Pharm. 2021, 120-125.
https://doi.org/10.22159/ijap.2021v13i6.42697

[11]. Bohrey, S.; Chourasia, V.; Pandey, A. Preparation, optimization by 23 factorial design, characterization and in vitro release kinetics of lorazepam loaded PLGA nanoparticles. Polymer Science Series A 2016, 58, 975-986.
https://doi.org/10.1134/S0965545X1606002X

[12]. Ali, S. W.; Rajendran, S.; Joshi, M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr. Polym. 2011, 83, 438-446.
https://doi.org/10.1016/j.carbpol.2010.08.004

[13]. Sivakami, M. S.; Gomathi, T.; Venkatesan, J.; Jeong, H.-S.; Kim, S.-K.; Sudha, P. N. Preparation and characterization of nano chitosan for treatment wastewaters. Int. J. Biol. Macromol. 2013, 57, 204-212.
https://doi.org/10.1016/j.ijbiomac.2013.03.005

[14]. Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein- and Peptide-Drug Conjugates. In Advances in Protein Chemistry and Structural Biology; Elsevier, 2015; pp. 1-55.
https://doi.org/10.1016/bs.apcsb.2014.11.001

[15]. Jiang, T.; Yu, X.; Carbone, E. J.; Nelson, C.; Kan, H. M.; Lo, K. W.-H. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int. J. Pharm. 2014, 475, 547-557.
https://doi.org/10.1016/j.ijpharm.2014.08.067

[16]. Fu, Y.-C.; Fu, T.-F.; Wang, H.-J.; Lin, C.-W.; Lee, G.-H.; Wu, S.-C.; Wang, C.-K. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014, 10, 4583-4596.
https://doi.org/10.1016/j.actbio.2014.07.015

[17]. Daroszewska, A. Prevention and treatment of osteoporosis in women: an update. Obstet. Gynaecol. Reprod. Med. 2012, 22, 162-169.
https://doi.org/10.1016/j.ogrm.2012.02.007

[18]. Miladi, K.; Sfar, S.; Fessi, H.; Elaissari, A. Enhancement of alendronate encapsulation in chitosan nanoparticles. J. Drug Deliv. Sci. Technol. 2015, 30, 391-396.
https://doi.org/10.1016/j.jddst.2015.04.007

[19]. Sastri, K. T.; Radha, G. V.; Pidikiti, S.; Vajjhala, P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J. Appl. Pharm. Sci. 2020, 10, 126-141.
https://doi.org/10.7324/JAPS.2020.10617

[20]. Rumian, Ł.; Wolf-Brandstetter, C.; Rößler, S.; Reczyńska, K.; Tiainen, H.; Haugen, H. J.; Scharnweber, D.; Pamuła, E. Sodium alendronate loaded poly(l-lactide- co-glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. Regen. Biomater. 2020, 7, 293-302.
https://doi.org/10.1093/rb/rbaa012

[21]. Beloqui, A.; Solinís, M. Á.; Rodríguez-Gascón, A.; Almeida, A. J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016, 12, 143-161.
https://doi.org/10.1016/j.nano.2015.09.004

[22]. Cenni, E.; Granchi, D.; Avnet, S.; Fotia, C.; Salerno, M.; Micieli, D.; Sarpietro, M. G.; Pignatello, R.; Castelli, F.; Baldini, N. Biocompatibility of poly(D,L-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 2008, 29, 1400-1411.
https://doi.org/10.1016/j.biomaterials.2007.12.022

[23]. Vijaykumar, N.; Rueda, J. Nanoparticles for improved delivery of poorly soluble drugs. J. Drug 2016, 1, 18-27.
https://doi.org/10.24218/jod.2016.4

[24]. Saini, D.; Fazil, M.; Ali, M. M.; Baboota, S.; Ali, J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015, 22, 823-836.
https://doi.org/10.3109/10717544.2014.900153

[25]. Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H. D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release 2009, 133, 90-95.
https://doi.org/10.1016/j.jconrel.2008.09.073

[26]. Cohen-Sela, E.; Rosenzweig, O.; Gao, J.; Epstein, H.; Gati, I.; Reich, R.; Danenberg, H. D.; Golomb, G. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J. Control. Release 2006, 113, 23-30.
https://doi.org/10.1016/j.jconrel.2006.03.010

[27]. Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014, 62, 1165-1174.
https://doi.org/10.1016/j.foodres.2014.05.059

[28]. Dubey, S.; Vyas, S. P. Emulsomes for lipophilic anticancer drug delivery: Development, optimization and in vitro drug release kinetic study. Int. J. Appl. Pharm. 2021, 114-121.
https://doi.org/10.22159/ijap.2021v13i2.40339

[29]. Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 3.
https://doi.org/10.1186/s40580-016-0061-2

[30]. Weng, J.; Tong, H. H. Y.; Chow, S. F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 2020, 12, 732.
https://doi.org/10.3390/pharmaceutics12080732

[31]. Oz, U. C.; Küçüktürkmen, B.; Devrim, B.; Saka, O. M.; Bozkir, A. Development and optimization of alendronate sodium loaded PLGA nanoparticles by central composite design. Macromol. Res. 2019, 27, 857-866.
https://doi.org/10.1007/s13233-019-7119-z

[32]. Deca, A. G.; Belu, I.; Croitoru, O.; Bubulică, M. V.; Manda, C. V.; Neamtu, J. Formulation and in vitro evaluation of alendronate sodium/PLGA microspheres for applications in bone related disorders. Curr. Health Sci. J. 2015, 41, 246-250.

[33]. Liu, Y.-F.; Liu, R.; Li, X.-Y.; Song, Z.; Zhao, X.-H. Development of docetaxel and alendronate-loaded chitosan-conjugated polylactide-co-glycolide nanoparticles: In vitro characterization in osteosarcoma cells. Trop. J. Pharm. Res. 2016, 15, 1353-1360.
https://doi.org/10.4314/tjpr.v15i7.1

[34]. Sandhya, P.; Satyendra Kumar, T.; Chandni, P.; Archna, P. Encapsulation of alendronate in chitosan based polymeric nanoparticles for effective management of osteoporosis - development to release kinetic study. Int. J. Med. Nano Res. 2022, 9, 036.
https://doi.org/10.23937/2378-3664.1410036

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).