European Journal of Chemistry 2022, 13(4), 407-414 | doi: https://doi.org/10.5155/eurjchem.13.4.407-414.2246 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies


Sandhya Pathak (1,*) orcid , Sandeep Shukla (2) orcid , Bharat Patel (3) orcid , Satyendra Kumar Tripathi (4) orcid , Archna Pandey (5) orcid

(1) Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Sagar, 470003, Madhya Pradesh, India
(2) Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Sagar, 470003, Madhya Pradesh, India
(3) Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Sagar, 470003, Madhya Pradesh, India
(4) Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Sagar, 470003, Madhya Pradesh, India
(5) Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Sagar, 470003, Madhya Pradesh, India
(*) Corresponding Author

Received: 07 Mar 2022 | Revised: 19 Sep 2022 | Accepted: 24 Sep 2022 | Published: 31 Dec 2022 | Issue Date: December 2022

Abstract


Osteoporosis is a bone disease caused due to the reducing bone mineral density. Porous and more fragile bones increase the risk of fractures. Hip, spine, shoulder, and wrist bones are commonly affected by osteoporosis. Low bone density is a leading cause of osteoporosis. The most efficient prescribed drugs for the treatment of osteoporosis are bisphosphonates drugs. Alendronate was the first FDA approved bisphosphonate drug for the treatment of osteoporosis. Osteoclast cells are the primary targeting site for alendronate, responsible for bone resorption. A biopharmaceutical classification system class III bisphosphonate acts as a potent, efficient, and bone resorption inhibitor drug. In the present study, alendronate functionalized PLGA based nanoparticles were developed by a solvent diffusion method and optimized for different process variables. The formulated nanoparticles were characterized for surface morphology, particle size distribution, surface charge and drug-polymer compatibility. The scanning electron microscopy and transmission electron microscopy results showed nanoparticle size in the range below 200 nm. The average particle size and zeta potential of the formulated nanoparticles were found to be 175.3 nm and -13.98 mV, respectively. The highest encapsulation efficiency was 65.23%. The release profile was dissolution medium dependent and followed by the Higuchi model of release kinetics.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Alendronate; Osteoporosis; Bisphosphonate; Release kinetics; Nanoprecipitation; Bone mineral density

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.4.407-414.2246

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 288 times | icon graph PDF Article downloaded 84 times


References


[1]. Rapp, K.; Rothenbacher, D.; Magaziner, J.; Becker, C.; Benzinger, P.; König, H.-H.; Jaensch, A.; Büchele, G. Risk of nursing home admission after femoral fracture compared with stroke, myocardial infarction, and pneumonia. J. Am. Med. Dir. Assoc. 2015, 16, 715.e7-715.e12.
https://doi.org/10.1016/j.jamda.2015.05.013

[2]. Mithal, A.; Bansal, B.; Kyer, C. S.; Ebeling, P. The Asia-pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: A report of international osteoporosis foundation. Indian J. Endocrinol. Metab. 2014, 18, 449-454.
https://doi.org/10.4103/2230-8210.137485

[3]. Weaver, C. M.; Alexander, D. D.; Boushey, C. J.; Dawson-Hughes, B.; Lappe, J. M.; LeBoff, M. S.; Liu, S.; Looker, A. C.; Wallace, T. C.; Wang, D. D. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367-376.
https://doi.org/10.1007/s00198-015-3386-5

[4]. Akgun, B.; Avci, D. Synthesis and evaluations of bisphosphonate-containing monomers for dental materials. J. Polym. Sci. A Polym. Chem. 2012, 50, 4854-4863.
https://doi.org/10.1002/pola.26305

[5]. Gu, W.; Wu, C.; Chen, J.; Xiao, Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int. J. Nanomedicine 2013, 8, 2305-2317.
https://doi.org/10.2147/IJN.S44393

[6]. Chourasiya, V.; Bohrey, S.; Pandey, A. Hydrochlorothiazide containing PLGA nanoparticles: Design, characterization, in-vitro drug release and release kinetic study. Polym. Sci. Ser. B 2015, 57, 645-653.
https://doi.org/10.1134/S1560090415060020

[7]. Ochiuz, L.; Grigoras, C.; Popa, M.; Stoleriu, I.; Munteanu, C.; Timofte, D.; Profire, L.; Grigoras, A. G. Alendronate-loaded modified drug delivery lipid particles intended for improved oral and topical administration. Molecules 2016, 21, 858.
https://doi.org/10.3390/molecules21070858

[8]. Jagadish, B.; Yelchuri, R.; K, B.; Tangi, H.; Maroju, S.; Rao, V. U. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem. Pharm. Bull. (Tokyo) 2010, 58, 293-300.
https://doi.org/10.1248/cpb.58.293

[9]. Fasinu, P.; Pillay, V.; Ndesendo, V. M. K.; du Toit, L. C.; Choonara, Y. E. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011, 32, 185-209.
https://doi.org/10.1002/bdd.750

[10]. Pathak, S.; Vyas, S. P.; Pandey, A. Development, characterization and in vitro release kinetic studies of Ibandronate loaded chitosan nanoparticles for effective management of osteoporosis. Int. J. Appl. Pharm. 2021, 120-125.
https://doi.org/10.22159/ijap.2021v13i6.42697

[11]. Bohrey, S.; Chourasia, V.; Pandey, A. Preparation, optimization by 23 factorial design, characterization and in vitro release kinetics of lorazepam loaded PLGA nanoparticles. Polymer Science Series A 2016, 58, 975-986.
https://doi.org/10.1134/S0965545X1606002X

[12]. Ali, S. W.; Rajendran, S.; Joshi, M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr. Polym. 2011, 83, 438-446.
https://doi.org/10.1016/j.carbpol.2010.08.004

[13]. Sivakami, M. S.; Gomathi, T.; Venkatesan, J.; Jeong, H.-S.; Kim, S.-K.; Sudha, P. N. Preparation and characterization of nano chitosan for treatment wastewaters. Int. J. Biol. Macromol. 2013, 57, 204-212.
https://doi.org/10.1016/j.ijbiomac.2013.03.005

[14]. Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein- and Peptide-Drug Conjugates. In Advances in Protein Chemistry and Structural Biology; Elsevier, 2015; pp. 1-55.
https://doi.org/10.1016/bs.apcsb.2014.11.001

[15]. Jiang, T.; Yu, X.; Carbone, E. J.; Nelson, C.; Kan, H. M.; Lo, K. W.-H. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int. J. Pharm. 2014, 475, 547-557.
https://doi.org/10.1016/j.ijpharm.2014.08.067

[16]. Fu, Y.-C.; Fu, T.-F.; Wang, H.-J.; Lin, C.-W.; Lee, G.-H.; Wu, S.-C.; Wang, C.-K. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014, 10, 4583-4596.
https://doi.org/10.1016/j.actbio.2014.07.015

[17]. Daroszewska, A. Prevention and treatment of osteoporosis in women: an update. Obstet. Gynaecol. Reprod. Med. 2012, 22, 162-169.
https://doi.org/10.1016/j.ogrm.2012.02.007

[18]. Miladi, K.; Sfar, S.; Fessi, H.; Elaissari, A. Enhancement of alendronate encapsulation in chitosan nanoparticles. J. Drug Deliv. Sci. Technol. 2015, 30, 391-396.
https://doi.org/10.1016/j.jddst.2015.04.007

[19]. Sastri, K. T.; Radha, G. V.; Pidikiti, S.; Vajjhala, P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J. Appl. Pharm. Sci. 2020, 10, 126-141.
https://doi.org/10.7324/JAPS.2020.10617

[20]. Rumian, Ł.; Wolf-Brandstetter, C.; Rößler, S.; Reczyńska, K.; Tiainen, H.; Haugen, H. J.; Scharnweber, D.; Pamuła, E. Sodium alendronate loaded poly(l-lactide- co-glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone defects. Regen. Biomater. 2020, 7, 293-302.
https://doi.org/10.1093/rb/rbaa012

[21]. Beloqui, A.; Solinís, M. Á.; Rodríguez-Gascón, A.; Almeida, A. J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016, 12, 143-161.
https://doi.org/10.1016/j.nano.2015.09.004

[22]. Cenni, E.; Granchi, D.; Avnet, S.; Fotia, C.; Salerno, M.; Micieli, D.; Sarpietro, M. G.; Pignatello, R.; Castelli, F.; Baldini, N. Biocompatibility of poly(D,L-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 2008, 29, 1400-1411.
https://doi.org/10.1016/j.biomaterials.2007.12.022

[23]. Vijaykumar, N.; Rueda, J. Nanoparticles for improved delivery of poorly soluble drugs. J. Drug 2016, 1, 18-27.
https://doi.org/10.24218/jod.2016.4

[24]. Saini, D.; Fazil, M.; Ali, M. M.; Baboota, S.; Ali, J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015, 22, 823-836.
https://doi.org/10.3109/10717544.2014.900153

[25]. Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H. D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release 2009, 133, 90-95.
https://doi.org/10.1016/j.jconrel.2008.09.073

[26]. Cohen-Sela, E.; Rosenzweig, O.; Gao, J.; Epstein, H.; Gati, I.; Reich, R.; Danenberg, H. D.; Golomb, G. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J. Control. Release 2006, 113, 23-30.
https://doi.org/10.1016/j.jconrel.2006.03.010

[27]. Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014, 62, 1165-1174.
https://doi.org/10.1016/j.foodres.2014.05.059

[28]. Dubey, S.; Vyas, S. P. Emulsomes for lipophilic anticancer drug delivery: Development, optimization and in vitro drug release kinetic study. Int. J. Appl. Pharm. 2021, 114-121.
https://doi.org/10.22159/ijap.2021v13i2.40339

[29]. Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 3.
https://doi.org/10.1186/s40580-016-0061-2

[30]. Weng, J.; Tong, H. H. Y.; Chow, S. F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics 2020, 12, 732.
https://doi.org/10.3390/pharmaceutics12080732

[31]. Oz, U. C.; Küçüktürkmen, B.; Devrim, B.; Saka, O. M.; Bozkir, A. Development and optimization of alendronate sodium loaded PLGA nanoparticles by central composite design. Macromol. Res. 2019, 27, 857-866.
https://doi.org/10.1007/s13233-019-7119-z

[32]. Deca, A. G.; Belu, I.; Croitoru, O.; Bubulică, M. V.; Manda, C. V.; Neamtu, J. Formulation and in vitro evaluation of alendronate sodium/PLGA microspheres for applications in bone related disorders. Curr. Health Sci. J. 2015, 41, 246-250.

[33]. Liu, Y.-F.; Liu, R.; Li, X.-Y.; Song, Z.; Zhao, X.-H. Development of docetaxel and alendronate-loaded chitosan-conjugated polylactide-co-glycolide nanoparticles: In vitro characterization in osteosarcoma cells. Trop. J. Pharm. Res. 2016, 15, 1353-1360.
https://doi.org/10.4314/tjpr.v15i7.1

[34]. Sandhya, P.; Satyendra Kumar, T.; Chandni, P.; Archna, P. Encapsulation of alendronate in chitosan based polymeric nanoparticles for effective management of osteoporosis - development to release kinetic study. Int. J. Med. Nano Res. 2022, 9, 036.
https://doi.org/10.23937/2378-3664.1410036


How to cite


Pathak, S.; Shukla, S.; Patel, B.; Tripathi, S.; Pandey, A. Eur. J. Chem. 2022, 13(4), 407-414. doi:10.5155/eurjchem.13.4.407-414.2246
Pathak, S.; Shukla, S.; Patel, B.; Tripathi, S.; Pandey, A. Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies. Eur. J. Chem. 2022, 13(4), 407-414. doi:10.5155/eurjchem.13.4.407-414.2246
Pathak, S., Shukla, S., Patel, B., Tripathi, S., & Pandey, A. (2022). Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies. European Journal of Chemistry, 13(4), 407-414. doi:10.5155/eurjchem.13.4.407-414.2246
Pathak, Sandhya, Sandeep Shukla, Bharat Patel, Satyendra Kumar Tripathi, & Archna Pandey. "Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies." European Journal of Chemistry [Online], 13.4 (2022): 407-414. Web. 10 Dec. 2023
Pathak, Sandhya, Shukla, Sandeep, Patel, Bharat, Tripathi, Satyendra, AND Pandey, Archna. "Alendronate functionalized PLGA based nanoparticles for the effective treatment of osteoporosis-Formulation to in-vitro release kinetic studies" European Journal of Chemistry [Online], Volume 13 Number 4 (31 December 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.4.407-414.2246


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(4), 407-414 | doi: https://doi.org/10.5155/eurjchem.13.4.407-414.2246 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.