European Journal of Chemistry

Theoretical study of a single-walled carbon nanotube and a cellulose biofiber as 5-fluorouracil anti-cancer drug carriers

Crossmark


Main Article Content

Eshraq Ahmed Abdullah

Abstract

Chemotherapy is one of the most valuable and widely available option in cancer treatment. However, a method of delivering the drug to achieve a therapeutic effect still a considerable challenge. Therefore, this study seeks to identify the non-bonding interaction of 5-fluorouracil anticancer drug with a single walled carbon nanotube and a Cellulose bio-fiber using density functional theory and molecular mechanics simulations. To do that, adsorption locator and DMol3 modules were utilized to determine the electronic and optical properties of carriers before and after adsorption processes. The interaction energies indicate that the 5-fluorouracil molecule can physically adsorb and the optimized geometries are stable. The charge transfer occurs between N4-H10 bond of the 5-fluorouracil molecule and the cellulose carrier by a synergistic effect of hydrogen bond formation and van der Waals forces. This effect smoothly transforms into van der Waals interactions by O3, N4, and N5 atoms in the case of single-walled carbon nanotubes. There is a clear difference in the absorption peak and a significant narrowing of the molecular energy gap of a cellulose complex because of the shifting of the electron accepting center to a drug molecule. The conductor-like screening model shows the affinity of the complexes toward hydrogen bond acceptor, which enhances their solubility in biological systems. A remarkable influence in the case of the cellulose complex works as a starting point to use natural polymers as drug delivery carriers.


icon graph This Abstract was viewed 453 times | icon graph Article PDF downloaded 161 times

How to Cite
(1)
Abdullah, E. A. Theoretical Study of a Single-Walled Carbon Nanotube and a Cellulose Biofiber As 5-Fluorouracil Anti-Cancer Drug Carriers. Eur. J. Chem. 2022, 13, 69-77.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Akkın, S.; Varan, G.; Bilensoy, E. A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules 2021, 26 (11), 3382.
https://doi.org/10.3390/molecules26113382

[2]. Bououden, W.; Benguerba, Y.; Darwish, A. S.; Attoui, A.; Lemaoui, T.; Balsamo, M.; Erto, A.; Alnashef, I. M. Surface Adsorption of Crizotinib on Carbon and Boron Nitride Nanotubes as Anti-Cancer Drug Carriers: COSMO-RS and DFT Molecular Insights. J. Mol. Liq. 2021, 338 (116666), 116666.
https://doi.org/10.1016/j.molliq.2021.116666

[3]. Rodrigues, D.; de Souza, T.; Coyle, L.; Di Piazza, M.; Herpers, B.; Ferreira, S.; Zhang, M.; Vappiani, J.; Sévin, D. C.; Gabor, A.; Lynch, A.; Chung, S.-W.; Saez-Rodriguez, J.; Jennen, D. G. J.; Kleinjans, J. C. S.; de Kok, T. M. New Insights into the Mechanisms Underlying 5-Fluorouracil-Induced Intestinal Toxicity Based on Transcriptomic and Metabolomic Responses in Human Intestinal Organoids. Arch. Toxicol. 2021, 95 (8), 2691-2718.
https://doi.org/10.1007/s00204-021-03092-2

[4]. Safdari, F.; Raissi, H.; Shahabi, M.; Zaboli, M. DFT Calculations and Molecular Dynamics Simulation Study on the Adsorption of 5-Fluorouracil Anticancer Drug on Graphene Oxide Nanosheet as a Drug Delivery Vehicle. J. Inorg. Organomet. Polym. Mater. 2017, 27 (3), 805-817.
https://doi.org/10.1007/s10904-017-0525-9

[5]. Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent Advances in Designing 5-Fluorouracil Delivery Systems: A Stepping Stone in the Safe Treatment of Colorectal Cancer. Int. J. Nanomedicine 2020, 15, 5445-5458.
https://doi.org/10.2147/IJN.S257700

[6]. Sethy, C.; Kundu, C. N. 5-Fluorouracil (5-FU) Resistance and the New Strategy to Enhance the Sensitivity against Cancer: Implication of DNA Repair Inhibition. Biomed. Pharmacother. 2021, 137 (111285), 111285.
https://doi.org/10.1016/j.biopha.2021.111285

[7]. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shin, H.-S. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnology 2018, 16 (1), 71.
https://doi.org/10.1186/s12951-018-0392-8

[8]. Freitas, C. M. P.; Coimbra, J. S. R.; Souza, V. G. L.; Sousa, R. C. S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11 (8), 922.
https://doi.org/10.3390/coatings11080922

[9]. Ravikumar, R.; Peng, M. M.; Abidov, A.; Babu, C. M.; Vinodh, R.; Palanichamy, M.; Choi, E. Y.; Jang, H.-T. Nanofibrous Polymers Blend of Fluorouracil Loaded Chitosan-Hydroxy Ethyl Cellulose/ Poly Vinyl Alcohol: Synthesis and Characterization. Int. j. bio-sci. bio-technol. 2016, 8 (2), 295-306.
https://doi.org/10.14257/ijbsbt.2016.8.2.28

[10]. Yusefi, M.; Shameli, K.; Jahangirian, H.; Teow, S.-Y.; Umakoshi, H.; Saleh, B.; Rafiee-Moghaddam, R.; Webster, T. J. The Potential Anticancer Activity of 5-Fluorouracil Loaded in Cellulose Fibers Isolated from Rice Straw. Int. J. Nanomedicine 2020, 15, 5417-5432.
https://doi.org/10.2147/IJN.S250047

[11]. Khoshbayan, B.; Morsali, A.; Bozorgmehr, M. R.; Beyramabadi, S. A. Structural and Energetic Analysis of Cyclic Peptide-Gold Nano-Drug Delivery System: A DFT Study. Nanosistemy fiz. him. mat. 2021, 12 (5), 612-622.
https://doi.org/10.17586/2220-8054-2021-12-5-612-622

[12]. Kurban, M.; Muz, İ. Theoretical Investigation of the Adsorption Behaviors of Fluorouracil as an Anticancer Drug on Pristine and B-, Al, Ga-Doped C36 Nanotube. J. Mol. Liq. 2020, 309 (113209), 113209.
https://doi.org/10.1016/j.molliq.2020.113209

[13]. Javan, M. B.; Soltani, A.; Azmoodeh, Z.; Abdolahi, N.; Gholami, N. A DFT Study on the Interaction between 5-Fluorouracil and B12N12 Nanocluster. RSC Adv. 2016, 6 (106), 104513-104521.
https://doi.org/10.1039/C6RA18196A

[14]. Wazzan, N.; Soliman, K. A.; Halim, W. S. A. Theoretical Study of Gallium Nitride Nanocage as a Carrier for 5-Fluorouracil Anticancer Drug. J. Mol. Model. 2019, 25 (9), 265.
https://doi.org/10.1007/s00894-019-4147-8

[15]. Materials Studio package, BIOVIA, San Diego: Dassault Systèmes, USA, 2017, https://www.3ds.com/products-services/biovia/products/ molecular-modeling-simulation/ (accessed Nov 23, 2021).

[16]. Abdalla, M. A. M.; Peng, H.; Wu, D.; Abusin, L.; Mbah, T. J. Prediction of Hydrophobic Reagent for Flotation Process Using Molecular Modeling. ACS Omega 2018, 3 (6), 6483-6496.
https://doi.org/10.1021/acsomega.8b00413

[17]. Delley, B. An All‐electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92 (1), 508-517.
https://doi.org/10.1063/1.458452

[18]. Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113 (18), 7756-7764.
https://doi.org/10.1063/1.1316015

[19]. Ali, A. M.; Yahya, N.; Mijinyawa, A.; Kwaya, M. Y.; Sikiru, S. Molecular Simulation and Microtextural Characterization of Quartz Dissolution in Sodium Hydroxide. J. Pet. Explor. Prod. Technol. 2020, 10 (7), 2669-2684.
https://doi.org/10.1007/s13202-020-00940-2

[20]. Boraei, A. T. A.; Haukka, M.; Sarhan, A. A. M.; Soliman, S. M.; Barakat, A. Intramolecular Hydrogen Bond, Hirshfeld Analysis, AIM; DFT Studies of Pyran-2,4-Dione Derivatives. Crystals (Basel) 2021, 11 (8), 896.
https://doi.org/10.3390/cryst11080896

[21]. Grabowski, S. J. Chapter 1. Hydrogen Bond - Definitions, Criteria of Existence and Various Types. In Theoretical and Computational Chemistry Series; Royal Society of Chemistry: Cambridge, 2020.
https://doi.org/10.1039/9781839160400-00001

[22]. Compañy, A. D.; Juan, A.; Brizuela, G.; Simonetti, S. 5-Fluorouracil Adsorption on Hydrated Silica: Density Functional Theory Based-Study. Adsorption (Boston) 2017, 23 (2-3), 321-325.
https://doi.org/10.1007/s10450-016-9853-2

[23]. Shojaie, F.; Dehghan, M. Theoretical Study of Functionalized Single-Walled Carbon Nanotube (5, 5) with Mitoxantrone Drug. Nanomed. J. 2016, 3 (2), 115-126.

[24]. Khanmohammadi, A.; Mohammadi, M. Theoretical Study of Various Solvents Effect on 5-Fluorouracil-Vitamin B3 Complex Using Pcm Method. J. Chil. Chem. Soc. 2019, 64 (1), 4337-4344.
https://doi.org/10.4067/s0717-97072019000104337

[25]. Islam, M. J.; Kumer, A.; Sarker, N.; Paul, S.; Zannat, A. The Prediction and Theoretical Study for Chemical Reactivity, Thermophysical and Biological Activity of Morpholinium Nitrate and Nitrite Ionic Liquid Crystals: A DFT Study. Adv. J. Chem. A 2019, 2 (4), 316-326.
https://doi.org/10.33945/SAMI/AJCA.2019.4.5

[26]. Mirali, M.; Jafariazar, Z.; Mirzaei, M. Loading Tacrine Alzheimer's Drug at the Carbon Nanotube: DFT Approach. Lab-in-Silico 2021, 2 (1), 3-8.

[27]. Karachevtsev, V. A.; Plokhotnichenko, A. M.; Karachevtsev, M. V.; Leontiev, V. S. Decrease of Carbon Nanotube UV Light Absorption Induced by π-π-Stacking Interaction with Nucleotide Bases. Carbon N. Y. 2010, 48 (13), 3682-3691.
https://doi.org/10.1016/j.carbon.2010.06.009

[28]. Karisma, V. W.; Wu, W.; Lei, M.; Liu, H.; Nisar, M. F.; Lloyd, M. D.; Pourzand, C.; Zhong, J. L. UVA-Triggered Drug Release and Photo-Protection of Skin. Front. Cell Dev. Biol. 2021, 9, 598717.
https://doi.org/10.3389/fcell.2021.598717

[29]. Klamt, A.; Eckert, F. COSMO-RS: A Novel and Efficient Method for the a Priori Prediction of Thermophysical Data of Liquids. Fluid Phase Equilib. 2000, 172 (1), 43-72.
https://doi.org/10.1016/S0378-3812(00)00357-5

[30]. Suhaimi, H. E.; Hizaddin, H. F.; Wazeer, I.; El Blidi, L.; Hashim, M. A.; Hadj-Kali, M. K. Simultaneous Extraction of Sulfur and Nitrogen Compounds from Model Diesel Fuel Using Neoteric Green Solvents. ACS Omega 2021, 6 (34), 22317-22332.
https://doi.org/10.1021/acsomega.1c03034

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).