European Journal of Chemistry

Synthesis, computational studies, and Hirshfeld surface analysis of 2H-chromen-2-one and imine derivatives

Crossmark


Main Article Content

Felix Odame
Tatenda Madanhire
Jerry Joe Ebo Kingsley Harrison
Nathaniel Owusu Boadi
Eric Hosten

Abstract

Some 2H-chromen-2-one and imine derivatives have been synthesized through a one-pot condensation of aldehydes, diethyl malonate, and amine compounds. The compounds obtained have been characterized using FTIR, NMR, GC-MS, and elemental analysis. The single-crystal X-ray structure of 3-[piperidine-1-carbonyl]-2H-chromen-2-one (2) has been presented. Compound 2, recrystallized in the monoclinic space C2/c (no. 15), a = 16.654(15) Å, b = 8.789(7) Å, c = 18.460(18) Å, β = 102.89(5)°, = 2634(4) Å3, Z = 8, T = 296(2) K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.298 g/cm3, 17626 reflections measured (4.528° ≤ 2Θ ≤ 57.446°), 3321 unique (Rint = 0.0313, Rsigma = 0.0257) which were used in all calculations. The final R1 was 0.0441 (I > 2σ(I)) and wR2 was 0.1329 (all data). The experimental bond lengths, bond angles, and other topological properties of compound 2 were compared with the DFT calculated results, the comparison showed good agreement with each other with varying level deviations. The energy levels of HOMO and LUMO, as well as the global chemical reactivity descriptors of representative compound 2, have been presented. A discussion of the Hirshfeld surface analysis of compound 2 has been carried out to provide insight into its structural properties.


icon graph This Abstract was viewed 306 times | icon graph Article PDF downloaded 137 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Odame, F.; Madanhire, T.; Harrison, J. J. E. K.; Boadi, N. O.; Hosten, E. Synthesis, Computational Studies, and Hirshfeld Surface Analysis of 2H-Chromen-2-One and Imine Derivatives. Eur. J. Chem. 2023, 14, 287-296.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Abdel-Wahab, B. F.; Mohamed, H. A.; Farhat, A. A. Ethyl coumarin-3-carboxylate: Synthesis and chemical properties. Org. Commun. 2014, 7, 1-27 https://acgpubs.org/OC/2014/Volume%207/Issue%201/1-OC-1104-183.pdf.

[2]. Das, A. R.; Pal, G.; Bhattacharyya, P.; Ghosh, A. K.; Mukherjee, D.; Bandyopadhyay, D. Design and synthesis of coumarinyl 1,4-benzodioxanes as potential anti-oxidant. Tetrahedron Lett. 2012, 53, 7060-7066.
https://doi.org/10.1016/j.tetlet.2012.10.057

[3]. Jumal, J.; Ayomide, A. F. Synthesis and radical scavenging activity of 6-hydroxyl-4-methylcoumarin and its derivatives. In AIP Conference Proceedings; AIP Conference Proceedings, 2018; pp. 1972, 030021, https://doi.org/10.1063/1.5041242.
https://doi.org/10.1063/1.5041242

[4]. Al-Soud, Y. A.; Al-Sa'doni, H. H.; Amajaour, H. A. S.; Salih, K. S. M.; Mubarakb, M. S.; Al-Masoudic, N. A. Synthesis, characterization and anti-HIV and antitumor activities of new coumarin derivatives. Z. Naturforsch. B J. Chem. Sci. 2008, 63, 83-89.
https://doi.org/10.1515/znb-2008-0112

[5]. Yilmaz, F. Microwave-assisted synthesis and biological evaluation of some coumarin hydrazides. J. Turk. Chem. Soc. Sect. Chem. 2018, 551-568.
https://doi.org/10.18596/jotcsa.390928

[6]. Selvam, P.; Ramlakshmi, N.; Uma, G.; Arun Kumar, S.; Umamaheswari, A. Synthesis, characterisation and biological evaluation of novel coumarin derivatives. Rasayan J. Chem. 3, 275-280, http://www.rasayanjournal.co.in/vol-3/issue-2/14.pdf.

[7]. Rahman, F. S. A.; Yusufzai, S. K.; Osman, H.; Mohamad, D. Synthesis, characterisation and cytotoxicity activity of thiazole substitution of coumarin derivatives (characterisation of coumarin derivatives). J. Phys. Sci. 2016, 27 (1), 77-87. https://jps.usm.my/synthesis-characterisation-coumarin-derivatives/

[8]. Naik, C. G.; Malik, G. M.; Parekh, H. M. Novel coumarin derivatives: Synthesis, characterization and antimicrobial activity. S. Afr. J. Chem. 2019, 72, 248-252.
https://doi.org/10.17159/0379-4350/2019/v72a32

[9]. García-Beltrán, O.; Yañez, O.; Caballero, J.; Galdámez, A.; Mena, N.; Nuñez, M. T.; Cassels, B. K. Synthesis of coumarin derivatives as fluorescent probes for membrane and cell dynamics studies. Eur. J. Med. Chem. 2014, 76, 79-86.
https://doi.org/10.1016/j.ejmech.2014.02.016

[10]. Hafez, O. M. A.; Nassar, M. I.; El-Kousy, S. M.; Abdel-Razik, A. F.; Sherien, M. M. A.; El-Ghonemy, M. M. Synthesis of some new carbonitriles and pyrazole coumarin derivatives with potent antitumor and antimicrobial activities. Acta Pol. Pharm. 2014, 71, 594-601.

[11]. Muthipeedika, N. J.; Bodke, Y. D.; Telkar, S.; Bakulev, V. A. Synthesis of coumarins linked with 1,2,3-triazoles under microwave irradiation and evaluation of their antimicrobial and antioxidant activity. J. Mex. Chem. Soc. 2019, 64, 53-73.
https://doi.org/10.29356/jmcs.v64i1.1116

[12]. Abduljabbar, T.; K. Hadi, M. Synthesis, characterization and antibacterial evaluation of some coumarin derivatives. Iraqi J. Pharm. Sci. 2021, 30, 249-257.
https://doi.org/10.31351/vol30iss1pp249-257

[13]. Guan, A.-Y.; Liu, C.-L.; Li, M.; Li, Z.-N.; Zhang, M.-X.; Zhang, H. Synthesis and bioactivity of novel coumarin derivatives. Nat. Prod. Commun. 2011, 6, 1917-1920.
https://doi.org/10.1177/1934578X1100601232

[14]. Bensalah, D.; Mnasri, A.; Chakchouk-Mtibaa, A.; Mansour, L.; Mellouli, L.; Hamdi, N. Synthesis and antioxidant properties of some new thiazolyl coumarin derivatives. Green Chem. Lett. Rev. 2020, 13, 155-163.
https://doi.org/10.1080/17518253.2020.1762935

[15]. APEX2 (2010), SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[16]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[17]. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281-1284.
https://doi.org/10.1107/S0021889811043202

[18]. Odame, F.; Hosten, E.; Betz, R.; Lobb, K.; Tshentu, Z. Characterization and Computational Studies of 2-(Benzamido)Thiazol-5-yl Benzoate. J. Struct. Chem. 2019, 60, 136-142.
https://doi.org/10.1134/S0022476619010190

[19]. Odame, F.; Hosten, E. C.; Lobb, K.; Tshentu, Z. Ultrasound promoted synthesis, characterization and computational studies of some thiourea derivatives. J. Mol. Struct. 2020, 1216, 128302.
https://doi.org/10.1016/j.molstruc.2020.128302

[20]. Odame, F.; Hosten, E. C.; Tshentu, Z. R. Synthesis, characterization, and computational studies of n-[(9e)-8,10,17-triazatetracyclo[8.7.0.02,7.011,16]heptadeca- 1(17),2,4,6,11(16),12,14-heptaen-9-ylidene]benzamide. J. Struct. Chem. 2020, 61, 1177-1185.
https://doi.org/10.1134/S0022476620080016

[21]. Farrugia, L. J. ORTEP-3 for Windows - a version ofORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[22]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[23]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[24]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.

[25]. Salomon, O.; Reiher, M.; Hess, B. A. Assertion and validation of the performance of the B3LYP⋆ functional for the first transition metal row and the G2 test set. J. Chem. Phys. 2002, 117, 4729-4737.
https://doi.org/10.1063/1.1493179

[26]. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011

[27]. Salavati-Niasari, M.; Mirsattari, S. N.; Monajjemi, M.; Hamadanian, M. Density functional B3LYP and B3PW91 studies of the properties of four cyclic organodiboranes with tetramethylene fragments. J. Struct. Chem. 2010, 51, 437-443.
https://doi.org/10.1007/s10947-010-0065-4

[28]. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
https://doi.org/10.1039/b810189b

[29]. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theor. Chem. Acc. 2008, 119, 525-525.
https://doi.org/10.1007/s00214-007-0401-8

[30]. Dunning, T. H., Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
https://doi.org/10.1063/1.456153

[31]. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17.
https://doi.org/10.1186/1758-2946-4-17

[32]. GaussView, Version 6, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016.

[33]. Odame, F.; Schoeman, R.; Krause, J.; Hosten, E. C.; Tshentu, Z. R.; Frost, C. Synthesis, characterization, crystal structures, and anticancer activity of some new 2,3-dihydro-1,5-benzoxazepines. Med. Chem. Res. 2021, 30, 987-1004.
https://doi.org/10.1007/s00044-021-02706-9

[34]. Odame, F.; Hosten, E. C.; Betz, R.; Krause, J.; Frost, C. L.; Lobb, K.; Tshentu, Z. R. Synthesis, characterization, computational studies and DPPH scavenging activity of some triazatetracyclic derivatives. J. Iran. Chem. Soc. 2021, 18, 1979-1995.
https://doi.org/10.1007/s13738-021-02158-3

[35]. Harrison, J. J. E. K.; Ayine-Tora, M. D.; Appiagyei, B.; Mills-Robertson, F. C.; Asomaning, W. A.; Achel, D. G.; Ishida, H.; Kingsford-Adaboh, R. Crystal structure and in vitro antimicrobial activity studies of Robustic acid and other Alpinumisoflavones isolated from Millettia thonningii. Z. Kristallogr. Cryst. Mater. 2019, 234, 229-235.
https://doi.org/10.1515/zkri-2018-2052

[36]. Cremer, D.; Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97, 1354-1358.
https://doi.org/10.1021/ja00839a011

[37]. Al-Hazmy, S. M.; Zouaghi, M. O.; Al-Johani, J. N.; Arfaoui, Y.; Al-Ashwal, R.; Hammami, B.; Alhagri, I. A.; Alhemiary, N. A.; Hamdi, N. Chemosensing properties of coumarin derivatives: Promising agents with diverse pharmacological properties, docking and DFT investigation. Molecules 2022, 27.
https://doi.org/10.3390/molecules27185921

[38]. Mohammad, A.-T.; Al-Mohammedi, M. H.; Ghdhayeb, M. Z.; Husain Al-Majidi, S. M. Coumarin dimers of benzidine and phenylenediamine cores: synthesis, characterisation and mesomorphic properties. Liq. Cryst. 2020, 47, 414-422.
https://doi.org/10.1080/02678292.2019.1655806

[39]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[40]. Guin, M.; Khanna, S.; Elavarasi, S. B.; Sarkar, P. DFT calculations, Hirshfeld surface analysis and docking studies of 3-anisaldehyde thiosemicarbazone. J. Chem. Sci. (Bangalore) 2020, 132.
https://doi.org/10.1007/s12039-020-01793-2

[41]. Chandrasekaran, R.; Murugavel, S.; Guin, M.; Silambarasan, T. Crystal structure, Hirshfeld, computational biomolecular investigations, and MTT assay studies of amino pyrimidine derivative as EGFR kinase domain inhibitor. J. Mol. Struct. 2022, 1254, 132416.
https://doi.org/10.1016/j.molstruc.2022.132416

[42]. Munshi, S. J.; Guin, M.; Kundu, S.; Kumar, S. B. Synthesis, structures and Hirshfeld surface analysis of Ni(II) and Co(III) complexes with N2O donor Schiff base ligand. J. Indian Chem. Soc. 2021, 98, 100080.
https://doi.org/10.1016/j.jics.2021.100080

[43]. Kumar, S. B.; Munshi, S. J.; Sadhu, M. H.; Guin, M. Synthesis, structure and molecular Hirshfeld surface analysis of polymeric cadmium(II) complex involving tetradentate N3S-donor ligand and dicyanamide as bridging ligand. Ind. J. Chem. 2021, 60, 663-668.
https://doi.org/10.56042/ijca.v60i5.42178

[44]. Guin, M.; Halder, S.; Chatterjee, S.; Konar, S. Synthesis, X-ray crystal structure of Cu(II) 1D coordination Polymer: In View of Hirshfeld surface, FMO, Molecular electrostatic potential (MEP) and Natural Bond orbital (NBO) analyses. J. Mol. Struct. 2022, 1270, 133949.
https://doi.org/10.1016/j.molstruc.2022.133949

[45]. Ramalingam, A.; Sambandam, S.; Medimagh, M.; Al-Dossary, O.; Issaoui, N.; Wojcik, M. J. Study of a new piperidone as an anti-Alzheimer agent: Molecular docking, electronic and intermolecular interaction investigations by DFT method. J. King Saud Univ. Sci. 2021, 33, 101632.
https://doi.org/10.1016/j.jksus.2021.101632

[46]. Arulraj, R. Hirshfeld surface analysis, interaction energy calculation and spectroscopical study of 3-chloro-3-methyl-r(2),c(6)-bis(p-tolyl)piperidin-4-one using DFT approaches. J. Mol. Struct. 2022, 1248, 131483.
https://doi.org/10.1016/j.molstruc.2021.131483

[47]. Dhandapani, A.; Veeramanikandan, S.; Kumar, R. S.; Almansour, A. I.; Arumugam, N.; Subashchandrabose, S.; Suresh, J.; Arulraj, R.; Gajalakshmi, D. Synthesis, in vitro and in silico antitumor evaluation of 3-(2,6-dichlorophenyl)-1,5-diphenylpentane-1,5‑dione: Structure, spectroscopic, RDG, Hirshfeld and DFT based analyses. J. Mol. Struct. 2022, 1251, 132002.
https://doi.org/10.1016/j.molstruc.2021.132002

[48]. Ramalingam, A.; Kansız, S.; Dege, N.; Sambandam, S. Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-chloro-2,6-bis(4-chlorophenyl)-3-methylpiperidin-4-one. J. Chem. Crystallogr. 2021, 51, 273-287.
https://doi.org/10.1007/s10870-020-00852-3

[49]. Kumar, A.; Sambandam, S.; Ramalingam, A.; Krishnamoorthy, R.; Arumugam, D.; Oyeneyin, O. E. Synthesis, molecular docking of 3-(2-chloroethyl)-2,6-diphenylpiperidin-4-one: Hirshfeld surface, spectroscopic and DFT based analyses. J. Mol. Struct. 2022, 1262, 132993.
https://doi.org/10.1016/j.molstruc.2022.132993

[50]. Arulraj, R.; Sivakumar, S.; Suresh, S.; Anitha, K. Synthesis, vibrational spectra, DFT calculations, Hirshfeld surface analysis and molecular docking study of 3-chloro-3-methyl-2,6-diphenylpiperidin-4-one. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 232, 118166.
https://doi.org/10.1016/j.saa.2020.118166

[51]. Arulraj, R.; Sivakumar, S.; Rajkumar, K.; Jasinski, J. P.; Kaur, M.; Thiruvalluvar, A. Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-3-methyl-r(2),c(6)-bis(p-methoxyphenyl)piperidin-4-one. J. Chem. Crystallogr. 2020, 50, 41-51.
https://doi.org/10.1007/s10870-018-0759-6

[52]. Ashfaq, M.; Munawar, K. S.; Bogdanov, G.; Ali, A.; Tahir, M. N.; Ahmed, G.; Ramalingam, A.; Alam, M. M.; Imran, M.; Sambandam, S.; Munir, B. Single crystal inspection, Hirshfeld surface investigation and DFT study of a novel derivative of 4-fluoroaniline: 4-((4-fluorophenyl) amino)-4-oxobutanoic acid (BFAOB). J. Iran. Chem. Soc. 2022, 19, 1953-1961.
https://doi.org/10.1007/s13738-021-02432-4

[53]. Poiyamozhi, A.; Sundaraganesan, N.; Karabacak, M.; Tanrıverdi, O.; Kurt, M. The spectroscopic (FTIR, FT-Raman, UV and NMR), first-order hyperpolarizability and HOMO-LUMO analysis of 4-amino-5-chloro-2-methoxybenzoic acid. J. Mol. Struct. 2012, 1024, 1-12.
https://doi.org/10.1016/j.molstruc.2012.05.008

[54]. Udhayakala, P.; Jayanthi A.; Rajendiran, T. V.; Gunasekarand S. Molecular structure, FT-IR and FT-Raman spectra and HOMO-LUMO analysis of 2-methoxy-4-nitroaniline using ab initio HF and DFT (B3LYP/B3PW91) calculations. Archives of Applied Science Research 2011, 3, 424-439, http://www.scholarsresearchlibrary.com/aasr-vol3-iss4/AASR-2011-3-4-424-439.pdf.

[55]. Govindarajan, M.; Periandy, S.; Carthigayen, K. FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 411-422.
https://doi.org/10.1016/j.saa.2012.06.028

[56]. Murugavel S.; Manikandan, N.; Lakshmanan, D.; Naveen, K.; Perumal, P. T. Synthesis, crystal structure, DFT and antibacterial activity studies of (E)-2-benzyl-3-(furan-3-yl)-6,7-dimethoxy-4-(2-phenyl-1H-inden-1-ylidene)-1,2,3,4-tetrahydroisoquinoline, J. Chil. Chem. Soc. 2015, 60(3), 3015−3020.
https://doi.org/10.4067/S0717-97072015000300008

[57]. Parr, R. G.; Chattaraj, P. K. Principle of maximum hardness. J. Am. Chem. Soc. 1991, 113, 1854-1855.
https://doi.org/10.1021/ja00005a072

[58]. Pauling, L. The nature of the chemical bond: An introduction to modern structural chemistry; 3rd ed.; Cornell University Press: Ithaca, NY, 1960.

[59]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922-1924.
https://doi.org/10.1021/ja983494x

[60]. Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Chemical reactivity profiles of two selected polychlorinated biphenyls. J. Phys. Chem. A 2003, 107, 10346-10352.
https://doi.org/10.1021/jp035620b

[61]. Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Electrophilicity index as a possible descriptor of biological activity. Bioorg. Med. Chem. 2004, 12, 5533-5543.
https://doi.org/10.1016/j.bmc.2004.08.013

[62]. Aihara, J.-I. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 1999, 103, 7487-7495.
https://doi.org/10.1021/jp990092i

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).