European Journal of Chemistry

Crystal structures, computational studies, and Hirshfeld surface analysis on 7-hydroxy-4-methyl-2H-chromen-2-one and 7-hydroxy-4-methyl-8-nitro-2H-chromen-2-one

Crossmark


Main Article Content

Felix Odame
Nathaniel Owusu Boadi
Salifu Nanga
Albert Aniagyei
Eric Hosten

Abstract

7-Hydroxy-4-methyl-2H-chromen-2-one and 7-hydroxy-4-methyl-8-nitro-2H-chromen-2-one have been synthesized. The compounds have been characterized using IR, NMR, GC-MS, and elemental analysis. The single-crystal X-ray structure of the compounds showed that compound 1 was crystallized in the orthorhombic space group P212121 while compound 2 crystalized in the monoclinic space group P21/c. A comparison of the computed and experimental bond lengths and bond angles showed good agreement among the data. A Hirshfeld surface analysis showed that the H∙∙∙O/O∙∙∙H interaction was the most prominent molecular interaction for both compound 1 H∙∙∙O/O∙∙∙H (34.4%) and compound 2 H∙∙∙O/O∙∙∙H (48.6%).


icon graph This Abstract was viewed 71 times | icon graph Article PDF downloaded 9 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article SUPP. MATER. downloaded 0 times

How to Cite
(1)
Odame, F.; Boadi, N. O.; Nanga, S.; Aniagyei, A.; Hosten, E. Crystal Structures, Computational Studies, and Hirshfeld Surface Analysis on 7-Hydroxy-4-Methyl-2H-Chromen-2-One and 7-Hydroxy-4-Methyl-8-Nitro-2H-Chromen-2-One. Eur. J. Chem. 2025, 16, 275-286.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Lončarić, M.; Gašo-Sokač, D.; Jokić, S.; Molnar, M. Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules 2020, 10 (1), 151.
https://doi.org/10.3390/biom10010151

[2]. Bao, W.; Wang, Z.; Li, Y. Coumarin Synthesis via Knoevenagel Condensation in Moisture Stable Room Temperature Ionic Liquids. J. Chem. Res. 2003, 2003 (5), 294-295.
https://doi.org/10.3184/030823403103173868

[3]. Heravi, M. M.; Khaghaninejad, S.; Mostofi, M. Pechmann Reaction in the Synthesis of Coumarin Derivatives. Adv. Heterocycl. Chem. 2014, 1-50.
https://doi.org/10.1016/B978-0-12-800171-4.00001-9

[4]. Belavagi, N. S.; Deshapande, N.; Sunagar, M. G.; Khazi, I. A. A practical one-pot synthesis of coumarins in aqueous sodium bicarbonate via intramolecular Wittig reaction at room temperature. RSC. Adv. 2014, 4 (75), 39667.
https://doi.org/10.1039/C4RA06996J

[5]. Olomola, T. O.; Klein, R.; Mautsa, N.; Sayed, Y.; Kaye, P. T. Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg. Med. Chem. 2013, 21 (7), 1964-1971.
https://doi.org/10.1016/j.bmc.2013.01.025

[6]. Murray, R. D. H.; Ballantyne, M. M. Claisen Rearrangements-I. Tetrahedron 1970, 26 (19), 4667-4671.
https://doi.org/10.1016/S0040-4020(01)93114-X

[7]. Vekariya, R. H.; Patel, H. D. Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review. Synth. Commun. 2014, 44 (19), 2756-2788.
https://doi.org/10.1080/00397911.2014.926374

[8]. He, X.; Yan, Z.; Hu, X.; Zuo, Y.; Jiang, C.; Jin, L.; Shang, Y. FeCl3-Catalyzed Cascade Reaction: An Efficient Approach to Functionalized Coumarin Derivatives. Synth. Commun. 2014, 44 (10), 1507-1514.
https://doi.org/10.1080/00397911.2013.862833

[9]. Prahadeesh, N.; Sithambaresan, M.; Mathiventhan, U. A Study on Hydrogen Peroxide Scavenging Activity and Ferric Reducing Ability of Simple Coumarins. Emerg. Sci. J. 2018, 2 (6), 417-427.
https://doi.org/10.28991/esj-2018-01161

[10]. Patil, S. B.; P., G.; Jalde, S. S. medicinal significance of novel coumarins: A review. Int. J. Curr. Pharm. Sci. 2021, 1-5.
https://doi.org/10.22159/ijcpr.2021v13i4.42733

[11]. Naseri, M.; Monsef-Esfehani, H.; Saeidnia, S.; Dastan, D.; Gohari, A. Antioxidative Coumarins from the Roots of Ferulago subvelutina. Asian. J. Chem. 2013, 25 (4), 1875-1878.
https://doi.org/10.14233/ajchem.2013.13208

[12]. Kumar, S.; Arora, A.; Kumar, R.; Senapati, N. N.; Singh, B. K. Recent advances in synthesis of sugar and nucleoside coumarin conjugates and their biological impact. Carbohydr. Res. 2023, 530, 108857.
https://doi.org/10.1016/j.carres.2023.108857

[13]. Barot, K. P.; Jain, S. V.; Kremer, L.; Singh, S.; Ghate, M. D. Recent advances and therapeutic journey of coumarins: current status and perspectives. Med. Chem. Res. 2015, 24 (7), 2771-2798.
https://doi.org/10.1007/s00044-015-1350-8

[14]. Cheke, R. S.; Patel, H. M.; Patil, V. M.; Ansari, I. A.; Ambhore, J. P.; Shinde, S. D.; Kadri, A.; Snoussi, M.; Adnan, M.; Kharkar, P. S.; Pasupuleti, V. R.; Deshmukh, P. K. Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics (Basel) 2022, 11, 566.
https://doi.org/10.3390/antibiotics11050566

[15]. Abdou, M. M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arab. J. Chem. 2017, 10, S3664-S3675.
https://doi.org/10.1016/j.arabjc.2014.04.005

[16]. Al-Ayed, A. S. Synthesis, Spectroscopy and Electrochemistry of New 3-(5-Aryl-4,5-Dihydro-1H-Pyrazol-3-yl)-4-Hydroxy-2H-Chromene-2-One 4, as a Novel Class of Potential Antibacterial and Antioxidant Derivatives. Int. J. Org. Chem. 2011, 01 (03), 87-96.
https://doi.org/10.4236/ijoc.2011.13014

[17]. Al-Majedy, Y. K.; Kadhum, A. A.; Al-Amiery, A. A.; Mohamad, A. B. Coumarins: The Antimicrobial agents. Syst. Rev. Pharm. SRP. 2017, 8 (1), 62-70.
https://doi.org/10.5530/srp.2017.1.11

[18]. Jumal, J.; Norhanis Sakinah, Synthesis, Characterization, and Applications of Coumarin Derivatives: A Short Review. MJoSHT. 2021, 7 (1), 62-68.
https://doi.org/10.33102/mjosht.v7i1.145

[19]. Liu, H.; Ren, Z.; Wang, W.; Gong, J.; Chu, M.; Ma, Q.; Wang, J.; Lv, X. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem. 2018, 157, 81-87.
https://doi.org/10.1016/j.ejmech.2018.07.059

[20]. Sahoo, J.; Kumar Mekap, S.; Sudhir Kumar, P. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J. Taibah. Univ. Sci. 2015, 9 (2), 187-195.
https://doi.org/10.1016/j.jtusci.2014.08.001

[21]. Vekariya, R. H.; Patel, K. D.; Rajani, D. P.; Rajani, S. D.; Patel, H. D. A one pot, three component synthesis of coumarin hybrid thiosemicarbazone derivatives and their antimicrobial evolution. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 23 (1), 10-19.
https://doi.org/10.1016/j.jaubas.2016.04.002

[22]. Basanagouda, M.; Shivashankar, K.; Kulkarni, M. V.; Rasal, V. P.; Patel, H.; Mutha, S. S.; Mohite, A. A. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin. Eur. J. Med. Chem. 2010, 45 (3), 1151-1157.
https://doi.org/10.1016/j.ejmech.2009.12.022

[23]. Villa-Martínez, C. A.; Magaña-Vergara, N. E.; Rodríguez, M.; Mojica-Sánchez, J. P.; Ramos-Organillo, A. A.; Barroso-Flores, J.; Padilla-Martínez, I. I.; Martínez-Martínez, F. J. Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1′-(2′-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. Molecules 2022, 27 (12), 3677.
https://doi.org/10.3390/molecules27123677

[24]. Vyas, K.; Nimavat, K.; Jani, G.; Hathi, M. V. Synthesis and Antimicrobial Activity of Coumarin Derivatives Metal Complexes: An in Vitro Evaluation. Orbital: Electron. J. Chem. 2009, 1 (2), 183-192.

[25]. Wei, Y.; Li, S.; Hao, S. New angular oxazole-fused coumarin derivatives: synthesis and biological activities. Nat. Prod. Res. 2017, 32 (15), 1824-1831.
https://doi.org/10.1080/14786419.2017.1405408

[26]. Chen, L. Z.; Sun, W. W.; Bo, L.; Wang, J. Q.; Xiu, C.; Tang, W. J.; Shi, J. B.; Zhou, H. P.; Liu, X. H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem. 2017, 138, 170-181.
https://doi.org/10.1016/j.ejmech.2017.06.044

[27]. Pu, W.; Lin, Y.; Zhang, J.; Wang, F.; Wang, C.; Zhang, G. 3-Arylcoumarins: Synthesis and potent anti-inflammatory activity. Bioorg. Med. Chem. Lett 2014, 24 (23), 5432-5434.
https://doi.org/10.1016/j.bmcl.2014.10.033

[28]. Olmedo, D.; Sancho, R.; Bedoya, L. M.; López-Pérez, J. L.; Del Olmo, E.; Muñoz, E.; Alcamí, J.; Gupta, M. P.; San Feliciano, A. 3-Phenylcoumarins as Inhibitors of HIV-1 Replication. Molecules 2012, 17 (8), 9245-9257.
https://doi.org/10.3390/molecules17089245

[29]. Salem, M.; Marzouk, M.; El-Kazak, A. Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules 2016, 21 (2), 249.
https://doi.org/10.3390/molecules21020249

[30]. Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611-630.
https://doi.org/10.1016/j.ejmech.2015.08.033

[31]. Keri, R. S.; B.S., S.; Nagaraja, B. M.; Santos, M. A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem. 2015, 100, 257-269.
https://doi.org/10.1016/j.ejmech.2015.06.017

[32]. Akoudad, S.; Darweesh, S. K.; Leening, M. J.; Koudstaal, P. J.; Hofman, A.; van der Lugt, A.; Stricker, B. H.; Ikram, M. A.; Vernooij, M. W. Use of Coumarin Anticoagulants and Cerebral Microbleeds in the General Population. Stroke 2014, 45 (11), 3436-3439.
https://doi.org/10.1161/STROKEAHA.114.007112

[33]. Hassan, M. Z.; Osman, H.; Ali, M. A.; Ahsan, M. J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem 2016, 123, 236-255.
https://doi.org/10.1016/j.ejmech.2016.07.056

[34]. Wijayabandara, M. D.; Choudhary, M. I.; Wijayabandara, M. D.; Adhikari, A. Scopoletin - an anti-hyperglycemic Coumarin from the fruit of Averrhoa carambola L. (Star fruit). Pharm. J. SL. 2017, 7, 51.
https://doi.org/10.4038/pjsl.v7i0.22

[35]. Al-Amiery, A. A.; Al-Majedy, Y. K.; Kadhum, A. A.; Mohamad, A. B. Novel macromolecules derived from coumarin: synthesis and antioxidant activity Sci. Rep. 2015, 5 (1), 11825
https://doi.org/10.1038/srep11825

[36]. Matos, M.; Mura, F.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E.; Olea-Azar, C. Study of Coumarin-Resveratrol Hybrids as Potent Antioxidant Compounds. Molecules 2015, 20 (2), 3290-3308.
https://doi.org/10.3390/molecules20023290

[37]. Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab. J. Chem. 2018, 11 (4), 525-537.
https://doi.org/10.1016/j.arabjc.2017.05.007

[38]. Nagamallu, R.; Srinivasan, B.; Ningappa, M. B.; Kariyappa, A. K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem Lett. 2016, 26 (2), 690-694.
https://doi.org/10.1016/j.bmcl.2015.11.038

[39]. Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg. Med. Chem. 2012, 20 (3), 1175-1180.
https://doi.org/10.1016/j.bmc.2011.12.042

[40]. Bagheri, S. M.; Khoobi, M.; Nadri, H.; Moradi, A.; Emami, S.; Jalili‐Baleh, L.; Jafarpour, F.; Homayouni Moghadam, F.; Foroumadi, A.; Shafiee, A. Synthesis and Anticholinergic Activity of 4‐hydroxycoumarin Derivatives Containing Substituted Benzyl‐1,2,3‐triazole Moiety. Chem. Biol. Drug. Des. 2015, 86 (5), 1215-1220.
https://doi.org/10.1111/cbdd.12588

[41]. Razavi, S. F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2013, 64, 252-259.
https://doi.org/10.1016/j.ejmech.2013.03.021

[42]. Odame, F.; Tshentu, Z. R.; Lobb, K. Solvent promoted tautomerism in thione-containing tetraazatricyclics: evidence from 1H NMR spectroscopy and transition state studies. J. Mol. Model 2022, 28, 215.
https://doi.org/10.1007/s00894-022-05204-w

[43]. Gastaca, B.; Sánchez, H. R.; Menestrina, F.; Caputo, M.; Schiavoni, M. d.; Furlong, J. J. Thiosemicarbazones Synthesized from Acetophenones: Tautomerism, Spectrometric Data, Reactivity and Theoretical Calculations. IJAMSC. 2019, 07 (02), 19-34.
https://doi.org/10.4236/ijamsc.2019.72003

[44]. Bečić, E.; Dedić, M.; Imamović, B.; Špirtović-Halilović, S.; Omeragić, E. Substituent and Solvent Effects on the Spectral Properties of 3 Substituted Derivatives of 4-Hydroxycoumarin. Kem. U. Ind. 2024, 73 (1-2), 1-6.
https://doi.org/10.15255/KUI.2023.018

[45]. Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

[46]. Sheldrick, G. M. A short history of SHELX. Acta. Crystallogr. A. Found. Crystallogr. 2007, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[47]. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface forSHELXL. J. Appl. Crystallogr. 2011, 44 (6), 1281-1284.
https://doi.org/10.1107/S0021889811043202

[48]. Farrugia, L. J. ORTEP-3 for Windows - a version ofORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30 (5), 565-565.
https://doi.org/10.1107/S0021889897003117

[49]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[50]. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (Pt 2), 148-155.
https://doi.org/10.1107/S090744490804362X

[51]. Rodríguez, S. E.; Hernandez-Fernández, E.; Vázquez, M. A.; García-Revilla, M. A.; Lagunas-Rivera, S. DFT Computational Analysis of Photophysical (Linear and Non-linear) and Photochemical Parameters for the Design of New Coumarins as Photocatalyst. Top. Catal. 2023, 67 (5-8), 520-529.
https://doi.org/10.1007/s11244-023-01871-y

[52]. Gawad, S. A.; Sakr, M. A. Spectroscopic investigation, DFT and TD-DFT calculations of 7-(Diethylamino) Coumarin (C466). J. Mol. Struc. 2022, 1248, 131413.
https://doi.org/10.1016/j.molstruc.2021.131413

[53]. Hagar, M.; Ahmed, H. A.; Alhaddadd, O. A. DFT Calculations and Mesophase Study of Coumarin Esters and Its Azoesters. Crystals (Basel) 2018, 8 (9), 359.
https://doi.org/10.3390/cryst8090359

[54]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[55]. Padmaja, L.; Ravikumar, C.; Sajan, D.; Hubert Joe, I.; Jayakumar, V. S.; Pettit, G. R.; Faurskov Nielsen, O. Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. J. Raman Spectroscopy 2008, 40 (4), 419-428.
https://doi.org/10.1002/jrs.2145

[56]. Poiyamozhi, A.; Sundaraganesan, N.; Karabacak, M.; Tanrıverdi, O.; Kurt, M. The spectroscopic (FTIR, FT-Raman, UV and NMR), first-order hyperpolarizability and HOMO-LUMO analysis of 4-amino-5-chloro-2-methoxybenzoic acid. J. Mol. Struc. 2012, 1024, 1-12.
https://doi.org/10.1016/j.molstruc.2012.05.008

[57]. Suresh, C. H.; Remya, G. S.; Anjalikrishna, P. K. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIREs. Comput. Mol. Sci. 2022, 12 (5), e1601 https://doi.org/10.1002/wcms.1601.
https://doi.org/10.1002/wcms.1601

[58]. Nakamura, S.; Kobayashi, T.; Takata, A.; Uchida, K.; Asano, Y.; Murakami, A.; Goldberg, A.; Guillaumont, D.; Yokojima, S.; Kobatake, S.; Irie, M. Quantum yields and potential energy surfaces: a theoretical study. J. Phys. Org. Chem. 2007, 20 (11), 821-829.
https://doi.org/10.1002/poc.1245

[59]. Gadre, S. R.; Suresh, C. H.; Mohan, N. Electrostatic Potential Topology for Probing Molecular Structure, Bonding and Reactivity. Molecules 2021, 26 (11), 3289.
https://doi.org/10.3390/molecules26113289

[60]. Odame, F.; Hosten, E. C.; Betz, R.; Krause, J.; Frost, C. L.; Lobb, K.; Tshentu, Z. R. Synthesis, characterization, computational studies and DPPH scavenging activity of some triazatetracyclic derivatives. J. Iran. Chem. Soc. 2021, 18 (8), 1979-1995.
https://doi.org/10.1007/s13738-021-02158-3

[61]. Odame, F.; Kleyi, P.; Hosten, E.; Betz, R.; Lobb, K.; Tshentu, Z. The Formation of 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-Benzodiazepine from 1,2-Diaminobenzene in the Presence of Acetone. Molecules 2013, 18 (11), 14293-14305.
https://doi.org/10.3390/molecules181114293

[62]. Odame, F.; Schoeman, R.; Krause, J.; Hosten, E. C.; Tshentu, Z. R.; Frost, C. Synthesis, characterization, crystal structures, and anticancer activity of some new 2,3-dihydro-1,5-benzoxazepines. Med. Chem. Res. 2021, 30 (4), 987-1004.
https://doi.org/10.1007/s00044-021-02706-9

[63]. Odame, F.; Hosten, E. C.; Lobb, K.; Tshentu, Z. Ultrasound promoted synthesis, characterization and computational studies of some thiourea derivatives. J. Mol. Struc. 2020, 1216, 128302.
https://doi.org/10.1016/j.molstruc.2020.128302

[64]. Odame, F. Benzoyl isothiocyanates derived ligands as potential HIV-1 protease inhibitors and their reactions with gold ions, PhD Thesis, Nelson Mandela University, Faculty of Science, Department of Chemistry, 2016 https://core.ac.uk/download/pdf/224300821.pdf

[65]. Odame, F.; Hosten, E.; Betz, R.; Lobb, K.; Tshentu, Z. Characterization and Computational Studies of 2-(Benzamido)Thiazol-5-yl Benzoate. J. Struct. Chem. 2019, 60 (1), 136-142.
https://doi.org/10.1134/S0022476619010190

[66]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[67]. Al-Wahaibi, L. H.; Joubert, J.; Blacque, O.; Al-Shaalan, N. H.; El-Emam, A. A. Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole, a potential 11β-HSD1 inhibitor. Sci. Rep. 2019, 9 (1), https://doi.org/10.1038/s41598-019-56331-z.
https://doi.org/10.1038/s41598-019-56331-z

[68]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm. 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[69]. Odame, F.; Madanhire, T.; Hosten, E. C. Crystal Structure and Hirshfeld Surface Analysis of 3-(pyrrolidine-1-carbonyl)-2H-Chromen-2-One. J. Struct. Chem. 2024, 65 (7), 1305-1316.
https://doi.org/10.1134/S0022476624070035

[70]. Odame, F.; Madanhire, T.; Hosten, E. C.; Lobb, K. Crystal Structure, Hirshfeld Surface Analysis and Computational Studies of Two Benzo[b][1,4]Diazepine Derivatives. J. Struct. Chem. 2023, 64 (12), 2326-2342.
https://doi.org/10.1134/S0022476623120041

Supporting Agencies

The Centre for High Performance Computing in South Africa for the use of their computing resources (CHEM1261), South Africa.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).