European Journal of Chemistry

Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes

Main Article Content

Hanan Farouk Abd El-Halim
Mohamed Mohamed Omar
Gehad Genidy Mohamed
Mohsen Abou El-Ela Sayed


Schiff base ligands are prepared via condensation of pyridine-2,6-dicarboxaldehyde with 2-aminothiophenol (H2L1) and 2-aminobenzoic acid (H2L2), respectively. The ligands are characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes except Th(IV) H2L2 complex which is 1:1 electrolyte . IR spectra show that H2L1 and H2L2 ligands behave as neutral tridentate ligands and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III)- and Fe(III)-H2L1 and H2L2, Th(IV)-H2L2 and Mn(II)-H2L1 complexes) and triagonal bipyramidal (Co(II), Ni(II), Cu(II), Cd(II) and UO2(II)-H2L1 and H2L2 and Mn(II)-H2L2 complexes). The thermal behaviour of these chelates is studied using TG and DTA techniques and the activation thermodynamic parameters are calculated using Coats-Redfern method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species (Escherichia coli, P. vulgavis, B. subtilis and S. pyogones) and fungi (F. solani, A. niger and A. liavus). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent Schiff base ligands against one or more bacterial or fungi species.2_2_178_188_800

icon graph This Abstract was viewed 3890 times | icon graph Article PDF downloaded 1466 times

How to Cite
Abd El-Halim, H. F.; Omar, M. M.; Mohamed, G. G.; El-Ela Sayed, M. A. Spectroscopic and Biological Activity Studies on Tridentate Schiff Base Ligands and Their Transition Metal Complexes. Eur. J. Chem. 2011, 2, 178-188.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Sima, J. Crao. Chem. Acta 2001, 74, 593-600.

[2]. Ouyang, X. M.; Fei, B. L.; Okamuro, T. A.; Sun, W. Y.; Tang, W. X.; Ueyama N. Chem. Lett. 2002, 3, 362-363.

[3]. Datta, A.; Karan, N. K.; Mitra, S.; Rosair, G. Naturforsch. Z. 2002, 57b, 999-1002.

[4]. Jayabalakrishnan, C.; Natarajan, K. Trans. Met. Chem. 2002, 27, 75-79.

[5]. Sharghi, H.; Nasseri, M. A. Bull. Chem. Soc. Jpn. 2003, 76, 137-142.

[6]. Lions, F.; Martin, F. K. V. J. Am. Chem. Soc. 1960, 82, 2733-2737.

[7]. Blake, A. J.; Lavery, A. J.; Hyde, T. I.; Schroder, M. J. Chem. Soc. Dalton Trans. 1989, 5, 965-970.

[8]. Curry, J. D.; Robinson, M. A.; Busch, D. H. Inorg. Chem. 1967, 6, 1570-1574.

[9]. Thabet, S. K.; Hagopian, L. Mikrochim. Ichnoanal. Acta 1965, 5-6, 964-965.

[10]. Yao, W.; Carbtree, R. H. Inorg. Chem. 1996, 35, 3007-3011.

[11]. Nugent, S. J.; Wang, Q. M.; Bruce, D. W. New J. Chem. 1996, 20, 669-675.

[12]. Vance, A. L.; Alcock, N. W.; Heppert, J. A.; Busch, D. H. Inorg. Chem. 1998, 37, 6912-6920.

[13]. Mohamed, G. G.; Abd El-Wahab, Z. H. Spectrochim. Acta A 2005, 61, 1059-1068.

[14]. Mohamed, G. G. Spectrochim. Acta A 2006, 64, 188-195.

[15]. Soliman, A. A.; Mohamed, G. G. Thermochim. Acta 2004, 421, 151-159.

[16]. Sarin, R.; Munshi, K. N. J. Inorg. Nucl. Chem. 1972, 34, 581-590.

[17]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1954, 17, 2904-2910.

[18]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1953, 321, 3397-3405.

[19]. Guerriero, P.; Bullita, F.; Vigato, P. A.; Pelli, B.; Traldi, P. J. Heterocycl. Chem. 1988, 25(1), 145-154.

[20]. Bauer, A. W.; Kirby, W. M.; Sherris, C.; Turck, M. Am. J. Clin. Path. 1966, 45, 493-496.

[21]. Pfaller, M. A.; Burmeister, L.; Bartlett, M. A.; Rinaldi, M. G. J. Clin. Microbiol. 1988, 26, 1437-1441.

[22]. National Committee for Clinical Laboratory Standards. Antimicrobial susceptibilty of Flavobacteria. Performance, 41, 1997.

[23]. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3, Villanova, PA, 1993.

[24]. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibilty testing of conidium-forming filamentous: proposed standard M38-A. Wayne, PA, USA, 2002.

[25]. National Committee for Clinical Laboratory Standards. Method for antifungal disc diffusion susceptibility testing of yeast: proposed guideline M44-P, Wayne, PA, USA, 2003.

[26]. Liebowitz, L. D.; Ashbee, H. R.; Evans, E. G. V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D. and Global Surbeillance Group. Diagn. Microbiol. Infect. Dis. 2001, 4, 27-33.

[27]. Matar, M. J.; Zeichner, L. O.; Paetznick, V. L. J. R. Rodriguez, E. Chen, J. H. Rex. Agents Chemother. 2003, 47, 1647-1651.
PMid:12709335 PMCid:153338

[28]. Sari, N.; Arslan, S.; Logoglu, E.; Sakiyan, I. J. Sci. 2003, 16, 283-288.

[29]. Bjerrum, J.; Kgl. Metal Amine Formation in Aqueous Solution, Haase, Kopenhagen, 1941.

[30]. Irving, H.; Williams, R. J. P. J. Chem. Soc. 1953, 8, 3192-3210.

[31]. Olie, G. H.; Olive, S. The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide, Springer, Berlin, 1984. pp. 152

[32]. Orgel, L. E. An Introduction Metal Chemistry: Ligand Field Theory, 2nd Edn., Chapt. 2, 3, 4, Methuen, 1966.

[33]. Blake, A. J.; Lavery, A.; Schroder, M. Acta Crytallogr. C 1996 52, 37-39.

[34]. Gemel, C.; Folting, K.; Caulton, K. G. Inorg. Chem. 2000, 39, 1593-1597.

[35]. Pernak, J.; Rogoza, J. Arkivoc. 2000, 1, 889-904.

[36]. Mohamed, G. G.; Omar, M. M.; Ibrahim, A. A. Eur. J. Med. Chem. 2009, 44, 4801-4812.

[37]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1980.

[38]. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.

[39]. Sanmartin, J; Bermejo, M. R.; Deibe, A. M. G.; Maneiro, M.; Lage, C. Filho, A. J. C. Polyhedron 2000, 19, 185-192.

[40]. Coats, A. W.; Redfern, J. P. Nature 1964, 201, 68-69.

[41]. Tumer, M.; Koksal, H.; Sener, M. K. Trans. Met. Chem. 1999, 24, 414-420.

[42]. Imran, M.; Iqbal, J.; Iqbal, S.; Ijaz, N. Turk. J. Biol. 2007, 31, 67-72.

[43]. Azam, F.; Singh, S.; Khokhra, S. L.; Prakash, O. J. Zhejiang Univ. Sci. B. 2007, 8, 446-452.
PMid:17565517 PMCid:1879160

[44]. Caudhary, A.; Singh, R. V. Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 603-613.

Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).