

Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes
Hanan Farouk Abd El-Halim (1,*)




(1) Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Heliopolis, 11341, Egypt
(2) Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
(3) Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
(4) Department of Botany, Faculty of Science, Cairo University, Giza 12613, Egypt
(*) Corresponding Author
Received: 08 Aug 2010 | Revised: 24 Feb 2011 | Accepted: 05 Jan 2011 | Published: 30 Jun 2011 | Issue Date: June 2011
Abstract

Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.2.2.178-188.240
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Arafa A.M. Belal, M.A. Zayed, M. El-Desawy, Sh.M.A.H. Rakha
Structure investigation of three hydrazones Schiff’s bases by spectroscopic, thermal and molecular orbital calculations and their biological activities
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138, 49, 2015
DOI: 10.1016/j.saa.2014.10.091

[2]. Masoumeh Tabatabaee, Azadeh Taghinezhadkoshknou, Michal Dušek, Karla Fejfarová
Synthesis and Characterization of a Cobalt(II) Complex with(E)-Ń-(2-Hydroxy-3-Methoxybenzylidene)Isonicotinohydrazide and (E)-Ń-(2-Hydroxy-3-Methoxybenzylidene)Isonicotinohydrazidanium Nitrate as a By-Product
Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(10), 1506, 2015
DOI: 10.1080/15533174.2013.862827

[3]. G. Y. S. K. Swamy, P. Sivanarayanan, B. Sridhar, Laxmikanth Rao Joshi
Crystal structure studies and antimicrobial activities of transition metal complexes of pyridine-2,6-dicarboxylic acid and imidazole containing water clusters
Journal of Coordination Chemistry 69(10), 1602, 2016
DOI: 10.1080/00958972.2016.1175558

[4]. Pallavi Goel, Dinesh Kumar, Sulekh Chandra, Amit Kumar
Synthesis and Spectroscopic Study of Biologically Active Tridentate Schiff’s Base Ligand 2-Acetyl-5-methyl-furanthiosemicarbazone and its Mn(II), Co(II), Ni(II), and Cu(II) Complexes
Iranian Journal of Science and Technology, Transactions A: Science 42(2), 557, 2018
DOI: 10.1007/s40995-016-0140-6

[5]. Gehad G. Mohamed, Samir A. Ali, Hanan F. Abd El‐Halim
Antimicrobial and Bioinformatic Modelling Studies of Isatin Mixed Ligand and Some Ternary Chelates
ChemistrySelect 7(21), , 2022
DOI: 10.1002/slct.202200602

[6]. Juan R. Anacona, Rafael Salazar, Javier Santaella, Freddy Celis
Synthesis and characterization of transition metal complexes with a Schiff base derived from cephalexin and 1,2–diaminobenzene. antibacterial activity
Inorganic and Nano-Metal Chemistry 48(8), 404, 2018
DOI: 10.1080/24701556.2019.1569681

[7]. Ehab M. Zayed, M.A. Zayed, M. El-Desawy
Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134, 155, 2015
DOI: 10.1016/j.saa.2014.06.014

[8]. Eny Kusrini, Fatimah Hashim, Wan Nor Nadhirah Wan Noor Azmi, Nakisah Mat Amin, Ari Estuningtyas
A novel antiamoebic agent against Acanthamoeba sp. — A causative agent for eye keratitis infection
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 153, 714, 2016
DOI: 10.1016/j.saa.2015.09.021

[9]. Apoorva Upadhyay, Shefali Vaidya, Vakacharla S. Venkatasai, Prabha Jayapal, Anant K. Srivastava, Muralidharan Shanmugam, Maheswaran Shanmugam
Synthesis and characterization of 3d and 4f metal complexes of Schiff base ligands
Polyhedron 66, 87, 2013
DOI: 10.1016/j.poly.2013.02.039

[10]. Ehab M. Zayed, M. A. Zayed, Ahmed M. M. Hindy
Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities
Journal of Thermal Analysis and Calorimetry 116(1), 391, 2014
DOI: 10.1007/s10973-013-3560-y

[11]. Ehab M. Zayed, Gehad G. Mohamed, Walid M.I. Hassan, Asmaa K. Elkholy, H. Moustafa
Spectroscopic, thermal, biological activity, molecular docking and density functional theoretical investigation of novel bis Schiff base complexes
Applied Organometallic Chemistry 32(7), e4375, 2018
DOI: 10.1002/aoc.4375

[12]. C. Surendra Dilip, V. Siva Kumar, S. John Venison, I. Vetha potheher, D. Rajalaxmi (a) Subahashini
Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes
Journal of Molecular Structure 1040, 192, 2013
DOI: 10.1016/j.molstruc.2013.02.019

[13]. Walid M.I. Hassan, Ehab M. Zayed, Asmaa K. Elkholy, H. Moustafa, Gehad G. Mohamed
Spectroscopic and density functional theory investigation of novel Schiff base complexes
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103, 378, 2013
DOI: 10.1016/j.saa.2012.10.058

[14]. Getinet Tamiru Tigineh, Yuh-Sheng Wen, Ling-Kang Liu
Solvent-free mechanochemical conversion of 3-ethoxysalicylaldehyde and primary aromatic amines to corresponding Schiff-bases
Tetrahedron 71(1), 170, 2015
DOI: 10.1016/j.tet.2014.10.074

[15]. Jabbar Saleh Hadi
Synthesis, characterization, fluorescence, and thermal studies of a new series of Schiff bases derived from sulfaproxylene
European Journal of Chemistry 6(4), 404, 2015
DOI: 10.5155/eurjchem.6.4.404-409.1299

[16]. Getinet Tamiru Tigineh, Ling‐Kang Liu
Systematic studies on mechanochemical synthesis: Schiff bases from solid aromatic primary amines and aldehydes
Journal of the Chinese Chemical Society 66(12), 1729, 2019
DOI: 10.1002/jccs.201800486

[17]. R. Reshma, R. Selwin Joseyphus, D. Arish, R. Jaya Reshmi Jaya, J. Johnson
Tridentate imidazole-based Schiff base metal complexes: molecular docking, structural and biological studies
Journal of Biomolecular Structure and Dynamics 40(18), 8602, 2022
DOI: 10.1080/07391102.2021.1914171

[18]. J.R. Anacona, Virginia Barrios, Alina Bravo, Freddy Celis
Transition metal complexes containing a tridentate cefadroxil-based Schiff base: An effective paramagnetic semiquinone Ag (I) complex against Staphylococcus aureus and Pseudomonas aeruginosa
Applied Organometallic Chemistry 32(12), e4562, 2018
DOI: 10.1002/aoc.4562

[19]. S. Sangeeta, K. Ahmad, N. Noorussabah, S. Bharti, M.K. Mishra, S.R. Sharma, M. Choudhary
Synthesis, characterization, crystal structure, superoxide dismutase and biological activities of nickel (II) complexes with bidentate ligands possessing N and O donor atoms
Journal of Molecular Structure 1149, 183, 2017
DOI: 10.1016/j.molstruc.2017.07.059

[20]. Yasmin M. Ahmed, M. M. Omar, Gehad G. Mohamed
Synthesis, spectroscopic characterization, and thermal studies of novel Schiff base complexes: theoretical simulation studies on coronavirus (COVID-19) using molecular docking
Journal of the Iranian Chemical Society 19(3), 901, 2022
DOI: 10.1007/s13738-021-02359-w

[21]. Agnieszka Gonciarz, Marian Żuber, Jerzy Zwoździak
Spectrochemical Properties and Solvatochromism of Tetradentate Schiff Base Complex with Nickel: Calculations and Experiments
ChemistryOpen 7(9), 677, 2018
DOI: 10.1002/open.201800100

[22]. Mohamed S. El‐Attar, Nosa S. Abd El‐Lattif, Sadeek A. Sadeek
Study on the nematicidal activity and chemical structure of NO bidentate Schiff base some metal complexes
Journal of the Chinese Chemical Society 67(4), 610, 2020
DOI: 10.1002/jccs.201900261

[23]. M. A. Zayed, Arafa Belal, S. M. A. H. Ragha
Structure Studies of the Prepared Novel Hydrazone Schiff’s Base Complexes Using Spectroscopic, Thermal Analyses and Their Biological Activities
Journal of Transition Metal Complexes 1, 1, 2018
DOI: 10.4303/jtmc/236047

[24]. R. Reshma, R. Selwin Joseyphus, Arish Dasan, Liji John
Synthesis and spectral characterization of metal complexes of Schiff base derived from indole-3-carboxaldehyde and L-histidine as potent biocides
Journal of Coordination Chemistry 72(19-21), 3326, 2019
DOI: 10.1080/00958972.2019.1695126

[25]. J.R. Anacona, Kysbel Mago, Juan Camus
Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization
Applied Organometallic Chemistry 32(7), e4374, 2018
DOI: 10.1002/aoc.4374

[26]. Line Edwige Tsakeng Ngoudjou, Awawou Gbambie Paboudam, Adrien Pamen Yepseu, Maurice Kuate, Giscard Doungmo, Peter Teke Ndifon
Synthesis, characterization, and biological activity of Cu(II), Ni(II), and Zn(II) complexes of a tridentate heterocyclic Schiff base ligand derived from thiosemicarbazide and 2-benzoylpyridine
European Journal of Chemistry 13(3), 299, 2022
DOI: 10.5155/eurjchem.13.3.299-306.2280

[27]. Kalyanmoy Jana, Tithi Maity, Tufan Singha Mahapatra, Pradeep Kumar Das Mohapatra, Subhas Chandra Debnath, Somnath Das, Maidul Hossain, Bidhan Chandra Samanta
A square pyramidal copper(II) complex of a Schiff base ligand: synthesis, crystal structure, antibacterial and DNA interaction studies
Transition Metal Chemistry 42(1), 69, 2017
DOI: 10.1007/s11243-016-0108-6

[28]. Manas Layek, Mahendra Ghosh, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay
Synthesis, crystal structure, and antibacterial activity of two new mononuclear nickel(II) complexes of a NNS Schiff base
Journal of Coordination Chemistry 67(20), 3371, 2014
DOI: 10.1080/00958972.2014.960861

[29]. Gehad Genidy Mohamed, Ahmed Mahmoud Mohamed Hindy, Mahmoud Sabry Rizk, Mai El-Sayed Sadek
Synthesis, spectroscopic and thermal characterization of Fe(III)-mixed ligand complexes and spectrophotometric determination of Fe(III) in various samples
European Journal of Chemistry 5(3), 402, 2014
DOI: 10.5155/eurjchem.5.3.402-409.977

[30]. Sulakshna Bharti, Mukesh Choudhary, Bharti Mohan, S.P. Rawat, S.R. Sharma, Khursheed Ahmad
Syntheses, characterization, superoxide dismutase, antimicrobial, crystal structure and molecular studies of copper (II) and nickel (II) complexes with 2-((E)-(2, 4-dibromophenylimino) methyl)-4-bromophenol as Schiff base ligand
Journal of Molecular Structure 1149, 846, 2017
DOI: 10.1016/j.molstruc.2017.07.101

[31]. Mahendra Ghosh, Manas Layek, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay
Synthesis, crystal structure and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of a NNS Schiff base
Polyhedron 85, 312, 2015
DOI: 10.1016/j.poly.2014.08.014

[32]. Amel Guerdouh, Djamel Barkat
Influence of the solvent on the extraction of copper(II) from nitrate medium using salicylideneaniline
Journal of Dispersion Science and Technology 38(7), 930, 2017
DOI: 10.1080/01932691.2016.1215926

[33]. Vladimír Kuchtanin, Lucia Kleščíková, Michal Šoral, Róbert Fischer, Zdeňka Růžičková, Erik Rakovský, Ján Moncoľ, Peter Segľa
Nickel(II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions
Polyhedron 117, 90, 2016
DOI: 10.1016/j.poly.2016.05.037

[34]. Juan Roberto Anacona, Karen Ruiz, Marcos Loroño, Freddy Celis
Antibacterial activity of transition metal complexes containing a tridentate NNO phenoxymethylpenicillin-based Schiff base. An anti-MRSA iron (II) complex
Applied Organometallic Chemistry 33(4), e4744, 2019
DOI: 10.1002/aoc.4744

[35]. Diary I. Tofiq, Hanar Q. Hassan, Karzan A. Abdalkarim
Preparation of a novel Mixed-Ligand divalent metal complexes from solvent free Synthesized Schiff base derived from 2,6-Diaminopyridine with cinnamaldehyde and 2,2′‐Bipyridine: Characterization and antibacterial activities
Arabian Journal of Chemistry 14(12), 103429, 2021
DOI: 10.1016/j.arabjc.2021.103429

[36]. Elias E. Elemike, Damian C. Onwudiwe, Henry U. Nwankwo, Eric C. Hosten
Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde
Journal of Molecular Structure 1136, 253, 2017
DOI: 10.1016/j.molstruc.2017.01.085

References
[2]. Ouyang, X. M.; Fei, B. L.; Okamuro, T. A.; Sun, W. Y.; Tang, W. X.; Ueyama N. Chem. Lett. 2002, 3, 362-363.
doi:10.1246/cl.2002.362
[3]. Datta, A.; Karan, N. K.; Mitra, S.; Rosair, G. Naturforsch. Z. 2002, 57b, 999-1002.
[4]. Jayabalakrishnan, C.; Natarajan, K. Trans. Met. Chem. 2002, 27, 75-79.
doi:10.1023/A:1013437203247
[5]. Sharghi, H.; Nasseri, M. A. Bull. Chem. Soc. Jpn. 2003, 76, 137-142.
doi:10.1246/bcsj.76.137
[6]. Lions, F.; Martin, F. K. V. J. Am. Chem. Soc. 1960, 82, 2733-2737.
[7]. Blake, A. J.; Lavery, A. J.; Hyde, T. I.; Schroder, M. J. Chem. Soc. Dalton Trans. 1989, 5, 965-970.
doi:10.1039/dt9890000965
[8]. Curry, J. D.; Robinson, M. A.; Busch, D. H. Inorg. Chem. 1967, 6, 1570-1574.
doi:10.1021/ic50054a032
[9]. Thabet, S. K.; Hagopian, L. Mikrochim. Ichnoanal. Acta 1965, 5-6, 964-965.
doi:10.1007/BF01219283
[10]. Yao, W.; Carbtree, R. H. Inorg. Chem. 1996, 35, 3007-3011.
doi:10.1021/ic9508076
[11]. Nugent, S. J.; Wang, Q. M.; Bruce, D. W. New J. Chem. 1996, 20, 669-675.
[12]. Vance, A. L.; Alcock, N. W.; Heppert, J. A.; Busch, D. H. Inorg. Chem. 1998, 37, 6912-6920.
doi:10.1021/ic9714201
PMid:11670829
[13]. Mohamed, G. G.; Abd El-Wahab, Z. H. Spectrochim. Acta A 2005, 61, 1059-1068.
doi:10.1016/j.saa.2004.06.021
PMid:15741103
[14]. Mohamed, G. G. Spectrochim. Acta A 2006, 64, 188-195.
doi:10.1016/j.saa.2005.05.044
PMid:16574474
[15]. Soliman, A. A.; Mohamed, G. G. Thermochim. Acta 2004, 421, 151-159.
doi:10.1016/j.tca.2004.03.010
[16]. Sarin, R.; Munshi, K. N. J. Inorg. Nucl. Chem. 1972, 34, 581-590.
doi:10.1016/0022-1902(72)80438-X
[17]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1954, 17, 2904-2910.
[18]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1953, 321, 3397-3405.
[19]. Guerriero, P.; Bullita, F.; Vigato, P. A.; Pelli, B.; Traldi, P. J. Heterocycl. Chem. 1988, 25(1), 145-154.
doi:10.1002/jhet.5570250121
[20]. Bauer, A. W.; Kirby, W. M.; Sherris, C.; Turck, M. Am. J. Clin. Path. 1966, 45, 493-496.
PMid:5325707
[21]. Pfaller, M. A.; Burmeister, L.; Bartlett, M. A.; Rinaldi, M. G. J. Clin. Microbiol. 1988, 26, 1437-1441.
[22]. National Committee for Clinical Laboratory Standards. Antimicrobial susceptibilty of Flavobacteria. Performance, 41, 1997.
[23]. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3, Villanova, PA, 1993.
[24]. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibilty testing of conidium-forming filamentous: proposed standard M38-A. Wayne, PA, USA, 2002.
[25]. National Committee for Clinical Laboratory Standards. Method for antifungal disc diffusion susceptibility testing of yeast: proposed guideline M44-P, Wayne, PA, USA, 2003.
[26]. Liebowitz, L. D.; Ashbee, H. R.; Evans, E. G. V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D. and Global Surbeillance Group. Diagn. Microbiol. Infect. Dis. 2001, 4, 27-33.
doi:10.1016/S0732-8893(01)00243-7
[27]. Matar, M. J.; Zeichner, L. O.; Paetznick, V. L. J. R. Rodriguez, E. Chen, J. H. Rex. Agents Chemother. 2003, 47, 1647-1651.
doi:10.1128/AAC.47.5.1647-1651.2003
PMid:12709335 PMCid:153338
[28]. Sari, N.; Arslan, S.; Logoglu, E.; Sakiyan, I. J. Sci. 2003, 16, 283-288.
[29]. Bjerrum, J.; Kgl. Metal Amine Formation in Aqueous Solution, Haase, Kopenhagen, 1941.
[30]. Irving, H.; Williams, R. J. P. J. Chem. Soc. 1953, 8, 3192-3210.
[31]. Olie, G. H.; Olive, S. The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide, Springer, Berlin, 1984. pp. 152
[32]. Orgel, L. E. An Introduction Metal Chemistry: Ligand Field Theory, 2nd Edn., Chapt. 2, 3, 4, Methuen, 1966.
[33]. Blake, A. J.; Lavery, A.; Schroder, M. Acta Crytallogr. C 1996 52, 37-39.
doi:10.1107/S0108270195009851
[34]. Gemel, C.; Folting, K.; Caulton, K. G. Inorg. Chem. 2000, 39, 1593-1597.
doi:10.1021/ic990737t
PMid:12526470
[35]. Pernak, J.; Rogoza, J. Arkivoc. 2000, 1, 889-904.
[36]. Mohamed, G. G.; Omar, M. M.; Ibrahim, A. A. Eur. J. Med. Chem. 2009, 44, 4801-4812.
doi:10.1016/j.ejmech.2009.07.028
PMid:19758728
[37]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1980.
[38]. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.
[39]. Sanmartin, J; Bermejo, M. R.; Deibe, A. M. G.; Maneiro, M.; Lage, C. Filho, A. J. C. Polyhedron 2000, 19, 185-192.
[40]. Coats, A. W.; Redfern, J. P. Nature 1964, 201, 68-69.
doi:10.1038/201068a0
[41]. Tumer, M.; Koksal, H.; Sener, M. K. Trans. Met. Chem. 1999, 24, 414-420.
doi:10.1023/A:1006973823926
[42]. Imran, M.; Iqbal, J.; Iqbal, S.; Ijaz, N. Turk. J. Biol. 2007, 31, 67-72.
[43]. Azam, F.; Singh, S.; Khokhra, S. L.; Prakash, O. J. Zhejiang Univ. Sci. B. 2007, 8, 446-452.
doi:10.1631/jzus.2007.B0446
PMid:17565517 PMCid:1879160
[44]. Caudhary, A.; Singh, R. V. Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 603-613.
doi:10.1080/10426500307927
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.2.2.178-188.240

















European Journal of Chemistry 2011, 2(2), 178-188 | doi: https://doi.org/10.5155/eurjchem.2.2.178-188.240 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.