European Journal of Chemistry 2011, 2(2), 178-188. doi:10.5155/eurjchem.2.2.178-188.240

Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes


Hanan Farouk Abd El-Halim (1,*) , Mohamed Mohamed Omar (2) , Gehad Genidy Mohamed (3) , Mohsen Abou El-Ela Sayed (4)

(1) Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Heliopolis, 11341, Egypt
(2) Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
(3) Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
(4) Department of Botany, Faculty of Science, Cairo University, Giza 12613, Egypt
(*) Corresponding Author

Received: 08 Aug 2010, Accepted: 05 Jan 2011, Published: 30 Jun 2011

Abstract


Schiff base ligands are prepared via condensation of pyridine-2,6-dicarboxaldehyde with 2-aminothiophenol (H2L1) and 2-aminobenzoic acid (H2L2), respectively. The ligands are characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes except Th(IV) H2L2 complex which is 1:1 electrolyte . IR spectra show that H2L1 and H2L2 ligands behave as neutral tridentate ligands and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III)- and Fe(III)-H2L1 and H2L2, Th(IV)-H2L2 and Mn(II)-H2L1 complexes) and triagonal bipyramidal (Co(II), Ni(II), Cu(II), Cd(II) and UO2(II)-H2L1 and H2L2 and Mn(II)-H2L2 complexes). The thermal behaviour of these chelates is studied using TG and DTA techniques and the activation thermodynamic parameters are calculated using Coats-Redfern method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species (Escherichia coli, P. vulgavis, B. subtilis and S. pyogones) and fungi (F. solani, A. niger and A. liavus). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent Schiff base ligands against one or more bacterial or fungi species.2_2_178_188_800

Keywords


Schiff bases; Transition metal complexes; Spectral studies; Thermal analyses; Biological activity; Potentiometric measurements

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.2.2.178-188.240

Article Metrics


This Abstract was viewed 1941 times | PDF Article downloaded 833 times

Citations

/


[1]. Arafa A.M. Belal, M.A. Zayed, M. El-Desawy, Sh.M.A.H. Rakha
Structure investigation of three hydrazones Schiff’s bases by spectroscopic, thermal and molecular orbital calculations and their biological activities
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  138, 49, 2015
DOI: 10.1016/j.saa.2014.10.091
/


[2]. Masoumeh Tabatabaee, Azadeh Taghinezhadkoshknou, Michal Dušek, Karla Fejfarová
Synthesis and Characterization of a Cobalt(II) Complex with(E)-Ń-(2-Hydroxy-3-Methoxybenzylidene)Isonicotinohydrazide and (E)-Ń-(2-Hydroxy-3-Methoxybenzylidene)Isonicotinohydrazidanium Nitrate as a By-Product
Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry  45(10), 1506, 2015
DOI: 10.1080/15533174.2013.862827
/


[3]. G. Y. S. K. Swamy, P. Sivanarayanan, B. Sridhar, Laxmikanth Rao Joshi
Crystal structure studies and antimicrobial activities of transition metal complexes of pyridine-2,6-dicarboxylic acid and imidazole containing water clusters
Journal of Coordination Chemistry  69(10), 1602, 2016
DOI: 10.1080/00958972.2016.1175558
/


[4]. Pallavi Goel, Dinesh Kumar, Sulekh Chandra, Amit Kumar
Synthesis and Spectroscopic Study of Biologically Active Tridentate Schiff’s Base Ligand 2-Acetyl-5-methyl-furanthiosemicarbazone and its Mn(II), Co(II), Ni(II), and Cu(II) Complexes
Iranian Journal of Science and Technology, Transactions A: Science  42(2), 557, 2018
DOI: 10.1007/s40995-016-0140-6
/


[5]. Juan R. Anacona, Rafael Salazar, Javier Santaella, Freddy Celis
Synthesis and characterization of transition metal complexes with a Schiff base derived from cephalexin and 1,2–diaminobenzene. antibacterial activity
Inorganic and Nano-Metal Chemistry  48(8), 404, 2018
DOI: 10.1080/24701556.2019.1569681
/


[6]. Ehab M. Zayed, M.A. Zayed, M. El-Desawy
Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  134, 155, 2015
DOI: 10.1016/j.saa.2014.06.014
/


[7]. Eny Kusrini, Fatimah Hashim, Wan Nor Nadhirah Wan Noor Azmi, Nakisah Mat Amin, Ari Estuningtyas
A novel antiamoebic agent against Acanthamoeba sp. — A causative agent for eye keratitis infection
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  153, 714, 2016
DOI: 10.1016/j.saa.2015.09.021
/


[8]. Apoorva Upadhyay, Shefali Vaidya, Vakacharla S. Venkatasai, Prabha Jayapal, Anant K. Srivastava, Muralidharan Shanmugam, Maheswaran Shanmugam
Synthesis and characterization of 3d and 4f metal complexes of Schiff base ligands
Polyhedron  66, 87, 2013
DOI: 10.1016/j.poly.2013.02.039
/


[9]. Ehab M. Zayed, M. A. Zayed, Ahmed M. M. Hindy
Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities
Journal of Thermal Analysis and Calorimetry  116(1), 391, 2014
DOI: 10.1007/s10973-013-3560-y
/


[10]. Ehab M. Zayed, Gehad G. Mohamed, Walid M.I. Hassan, Asmaa K. Elkholy, H. Moustafa
Spectroscopic, thermal, biological activity, molecular docking and density functional theoretical investigation of novel bis Schiff base complexes
Applied Organometallic Chemistry  32(7), e4375, 2018
DOI: 10.1002/aoc.4375
/


[11]. C. Surendra Dilip, V. Siva Kumar, S. John Venison, I. Vetha potheher, D. Rajalaxmi (a) Subahashini
Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes
Journal of Molecular Structure  1040, 192, 2013
DOI: 10.1016/j.molstruc.2013.02.019
/


[12]. Walid M.I. Hassan, Ehab M. Zayed, Asmaa K. Elkholy, H. Moustafa, Gehad G. Mohamed
Spectroscopic and density functional theory investigation of novel Schiff base complexes
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  103, 378, 2013
DOI: 10.1016/j.saa.2012.10.058
/


[13]. Getinet Tamiru Tigineh, Yuh-Sheng Wen, Ling-Kang Liu
Solvent-free mechanochemical conversion of 3-ethoxysalicylaldehyde and primary aromatic amines to corresponding Schiff-bases
Tetrahedron  71(1), 170, 2015
DOI: 10.1016/j.tet.2014.10.074
/


[14]. Getinet Tamiru Tigineh, Ling‐Kang Liu
Systematic studies on mechanochemical synthesis: Schiff bases from solid aromatic primary amines and aldehydes
Journal of the Chinese Chemical Society  , , 2019
DOI: 10.1002/jccs.201800486
/


[15]. J.R. Anacona, Virginia Barrios, Alina Bravo, Freddy Celis
Transition metal complexes containing a tridentate cefadroxil-based Schiff base: An effective paramagnetic semiquinone Ag (I) complex against Staphylococcus aureus and Pseudomonas aeruginosa
Applied Organometallic Chemistry  32(12), e4562, 2018
DOI: 10.1002/aoc.4562
/


[16]. S. Sangeeta, K. Ahmad, N. Noorussabah, S. Bharti, M.K. Mishra, S.R. Sharma, M. Choudhary
Synthesis, characterization, crystal structure, superoxide dismutase and biological activities of nickel (II) complexes with bidentate ligands possessing N and O donor atoms
Journal of Molecular Structure  1149, 183, 2017
DOI: 10.1016/j.molstruc.2017.07.059
/


[17]. Agnieszka Gonciarz, Marian Żuber, Jerzy Zwoździak
Spectrochemical Properties and Solvatochromism of Tetradentate Schiff Base Complex with Nickel: Calculations and Experiments
ChemistryOpen  7(9), 677, 2018
DOI: 10.1002/open.201800100
/


[18]. Mohamed S. El‐Attar, Nosa S. Abd El‐Lattif, Sadeek A. Sadeek
Study on the nematicidal activity and chemical structure of NO bidentate Schiff base some metal complexes
Journal of the Chinese Chemical Society  , , 2019
DOI: 10.1002/jccs.201900261
/


[19]. M. A. Zayed, Arafa Belal, S. M. A. H. Ragha
Structure Studies of the Prepared Novel Hydrazone Schiff’s Base Complexes Using Spectroscopic, Thermal Analyses and Their Biological Activities
Journal of Transition Metal Complexes  1, 1, 2018
DOI: 10.4303/jtmc/236047
/


[20]. J.R. Anacona, Kysbel Mago, Juan Camus
Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization
Applied Organometallic Chemistry  32(7), e4374, 2018
DOI: 10.1002/aoc.4374
/


[21]. Kalyanmoy Jana, Tithi Maity, Tufan Singha Mahapatra, Pradeep Kumar Das Mohapatra, Subhas Chandra Debnath, Somnath Das, Maidul Hossain, Bidhan Chandra Samanta
A square pyramidal copper(II) complex of a Schiff base ligand: synthesis, crystal structure, antibacterial and DNA interaction studies
Transition Metal Chemistry  42(1), 69, 2017
DOI: 10.1007/s11243-016-0108-6
/


[22]. Manas Layek, Mahendra Ghosh, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay
Synthesis, crystal structure, and antibacterial activity of two new mononuclear nickel(II) complexes of a NNS Schiff base
Journal of Coordination Chemistry  67(20), 3371, 2014
DOI: 10.1080/00958972.2014.960861
/


[23]. Gehad Genidy Mohamed, Ahmed Mahmoud Mohamed Hindy, Mahmoud Sabry Rizk, Mai El-Sayed Sadek
Synthesis, spectroscopic and thermal characterization of Fe(III)-mixed ligand complexes and spectrophotometric determination of Fe(III) in various samples
European Journal of Chemistry  5(3), 402, 2014
DOI: 10.5155/eurjchem.5.3.402-409.977
/


[24]. Sulakshna Bharti, Mukesh Choudhary, Bharti Mohan, S.P. Rawat, S.R. Sharma, Khursheed Ahmad
Syntheses, characterization, superoxide dismutase, antimicrobial, crystal structure and molecular studies of copper (II) and nickel (II) complexes with 2-(( E )-(2, 4-dibromophenylimino) methyl)-4-bromophenol as Schiff base ligand
Journal of Molecular Structure  1149, 846, 2017
DOI: 10.1016/j.molstruc.2017.07.101
/


[25]. Mahendra Ghosh, Manas Layek, Michel Fleck, Rajat Saha, Debasis Bandyopadhyay
Synthesis, crystal structure and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of a NNS Schiff base
Polyhedron  85, 312, 2015
DOI: 10.1016/j.poly.2014.08.014
/


[26]. Amel Guerdouh, Djamel Barkat
Influence of the solvent on the extraction of copper(II) from nitrate medium using salicylideneaniline
Journal of Dispersion Science and Technology  38(7), 930, 2017
DOI: 10.1080/01932691.2016.1215926
/


[27]. Vladimír Kuchtanin, Lucia Kleščíková, Michal Šoral, Róbert Fischer, Zdeňka Růžičková, Erik Rakovský, Ján Moncoľ, Peter Segľa
Nickel(II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada–Corriu cross-coupling reactions
Polyhedron  117, 90, 2016
DOI: 10.1016/j.poly.2016.05.037
/


[28]. Juan Roberto Anacona, Karen Ruiz, Marcos Loroño, Freddy Celis
Antibacterial activity of transition metal complexes containing a tridentate NNO phenoxymethylpenicillin-based Schiff base. An anti-MRSA iron (II) complex
Applied Organometallic Chemistry  33(4), e4744, 2019
DOI: 10.1002/aoc.4744
/


[29]. Elias E. Elemike, Damian C. Onwudiwe, Henry U. Nwankwo, Eric C. Hosten
Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde
Journal of Molecular Structure  1136, 253, 2017
DOI: 10.1016/j.molstruc.2017.01.085
/


References

[1]. Sima, J. Crao. Chem. Acta 2001, 74, 593-600.

[2]. Ouyang, X. M.; Fei, B. L.; Okamuro, T. A.; Sun, W. Y.; Tang, W. X.; Ueyama N. Chem. Lett. 2002, 3, 362-363.
doi:10.1246/cl.2002.362

[3]. Datta, A.; Karan, N. K.; Mitra, S.; Rosair, G. Naturforsch. Z. 2002, 57b, 999-1002.

[4]. Jayabalakrishnan, C.; Natarajan, K. Trans. Met. Chem. 2002, 27, 75-79.
doi:10.1023/A:1013437203247

[5]. Sharghi, H.; Nasseri, M. A. Bull. Chem. Soc. Jpn. 2003, 76, 137-142.
doi:10.1246/bcsj.76.137

[6]. Lions, F.; Martin, F. K. V. J. Am. Chem. Soc. 1960, 82, 2733-2737.

[7]. Blake, A. J.; Lavery, A. J.; Hyde, T. I.; Schroder, M. J. Chem. Soc. Dalton Trans. 1989, 5, 965-970.
doi:10.1039/dt9890000965

[8]. Curry, J. D.; Robinson, M. A.; Busch, D. H. Inorg. Chem. 1967, 6, 1570-1574.
doi:10.1021/ic50054a032

[9]. Thabet, S. K.; Hagopian, L. Mikrochim. Ichnoanal. Acta 1965, 5-6, 964-965.
doi:10.1007/BF01219283

[10]. Yao, W.; Carbtree, R. H. Inorg. Chem. 1996, 35, 3007-3011.
doi:10.1021/ic9508076

[11]. Nugent, S. J.; Wang, Q. M.; Bruce, D. W. New J. Chem. 1996, 20, 669-675.

[12]. Vance, A. L.; Alcock, N. W.; Heppert, J. A.; Busch, D. H. Inorg. Chem. 1998, 37, 6912-6920.
doi:10.1021/ic9714201
PMid:11670829

[13]. Mohamed, G. G.; Abd El-Wahab, Z. H. Spectrochim. Acta A 2005, 61, 1059-1068.
doi:10.1016/j.saa.2004.06.021
PMid:15741103

[14]. Mohamed, G. G. Spectrochim. Acta A 2006, 64, 188-195.
doi:10.1016/j.saa.2005.05.044
PMid:16574474

[15]. Soliman, A. A.; Mohamed, G. G. Thermochim. Acta 2004, 421, 151-159.
doi:10.1016/j.tca.2004.03.010

[16]. Sarin, R.; Munshi, K. N. J. Inorg. Nucl. Chem. 1972, 34, 581-590.
doi:10.1016/0022-1902(72)80438-X

[17]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1954, 17, 2904-2910.

[18]. Irving, H.; Rossotti, H. S. J. Chem. Soc. 1953, 321, 3397-3405.

[19]. Guerriero, P.; Bullita, F.; Vigato, P. A.; Pelli, B.; Traldi, P. J. Heterocycl. Chem. 1988, 25(1), 145-154.
doi:10.1002/jhet.5570250121

[20]. Bauer, A. W.; Kirby, W. M.; Sherris, C.; Turck, M. Am. J. Clin. Path. 1966, 45, 493-496.
PMid:5325707

[21]. Pfaller, M. A.; Burmeister, L.; Bartlett, M. A.; Rinaldi, M. G. J. Clin. Microbiol. 1988, 26, 1437-1441.

[22]. National Committee for Clinical Laboratory Standards. Antimicrobial susceptibilty of Flavobacteria. Performance, 41, 1997.

[23]. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3, Villanova, PA, 1993.

[24]. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibilty testing of conidium-forming filamentous: proposed standard M38-A. Wayne, PA, USA, 2002.

[25]. National Committee for Clinical Laboratory Standards. Method for antifungal disc diffusion susceptibility testing of yeast: proposed guideline M44-P, Wayne, PA, USA, 2003.

[26]. Liebowitz, L. D.; Ashbee, H. R.; Evans, E. G. V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D. and Global Surbeillance Group. Diagn. Microbiol. Infect. Dis. 2001, 4, 27-33.
doi:10.1016/S0732-8893(01)00243-7

[27]. Matar, M. J.; Zeichner, L. O.; Paetznick, V. L. J. R. Rodriguez, E. Chen, J. H. Rex. Agents Chemother. 2003, 47, 1647-1651.
doi:10.1128/AAC.47.5.1647-1651.2003
PMid:12709335 PMCid:153338

[28]. Sari, N.; Arslan, S.; Logoglu, E.; Sakiyan, I. J. Sci. 2003, 16, 283-288.

[29]. Bjerrum, J.; Kgl. Metal Amine Formation in Aqueous Solution, Haase, Kopenhagen, 1941.

[30]. Irving, H.; Williams, R. J. P. J. Chem. Soc. 1953, 8, 3192-3210.

[31]. Olie, G. H.; Olive, S. The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide, Springer, Berlin, 1984. pp. 152

[32]. Orgel, L. E. An Introduction Metal Chemistry: Ligand Field Theory, 2nd Edn., Chapt. 2, 3, 4, Methuen, 1966.

[33]. Blake, A. J.; Lavery, A.; Schroder, M. Acta Crytallogr. C 1996 52, 37-39.
doi:10.1107/S0108270195009851

[34]. Gemel, C.; Folting, K.; Caulton, K. G. Inorg. Chem. 2000, 39, 1593-1597.
doi:10.1021/ic990737t
PMid:12526470

[35]. Pernak, J.; Rogoza, J. Arkivoc. 2000, 1, 889-904.

[36]. Mohamed, G. G.; Omar, M. M.; Ibrahim, A. A. Eur. J. Med. Chem. 2009, 44, 4801-4812.
doi:10.1016/j.ejmech.2009.07.028
PMid:19758728

[37]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1980.

[38]. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.

[39]. Sanmartin, J; Bermejo, M. R.; Deibe, A. M. G.; Maneiro, M.; Lage, C. Filho, A. J. C. Polyhedron 2000, 19, 185-192.

[40]. Coats, A. W.; Redfern, J. P. Nature 1964, 201, 68-69.
doi:10.1038/201068a0

[41]. Tumer, M.; Koksal, H.; Sener, M. K. Trans. Met. Chem. 1999, 24, 414-420.
doi:10.1023/A:1006973823926

[42]. Imran, M.; Iqbal, J.; Iqbal, S.; Ijaz, N. Turk. J. Biol. 2007, 31, 67-72.

[43]. Azam, F.; Singh, S.; Khokhra, S. L.; Prakash, O. J. Zhejiang Univ. Sci. B. 2007, 8, 446-452.
doi:10.1631/jzus.2007.B0446
PMid:17565517 PMCid:1879160

[44]. Caudhary, A.; Singh, R. V. Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 603-613.
doi:10.1080/10426500307927


How to cite


Abd El-Halim, H.; Omar, M.; Mohamed, G.; El-Ela Sayed, M. Eur. J. Chem. 2011, 2(2), 178-188. doi:10.5155/eurjchem.2.2.178-188.240
Abd El-Halim, H.; Omar, M.; Mohamed, G.; El-Ela Sayed, M. Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes. Eur. J. Chem. 2011, 2(2), 178-188. doi:10.5155/eurjchem.2.2.178-188.240
Abd El-Halim, H., Omar, M., Mohamed, G., & El-Ela Sayed, M. (2011). Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes. European Journal of Chemistry, 2(2), 178-188. doi:10.5155/eurjchem.2.2.178-188.240
Abd El-Halim, Hanan, Mohamed Mohamed Omar, Gehad Genidy Mohamed, & Mohsen Abou El-Ela Sayed. "Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes." European Journal of Chemistry [Online], 2.2 (2011): 178-188. Web. 21 Oct. 2019
Abd El-Halim, Hanan, Omar, Mohamed, Mohamed, Gehad, AND El-Ela Sayed, Mohsen. "Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes" European Journal of Chemistry [Online], Volume 2 Number 2 (30 June 2011)

DOI Link: https://doi.org/10.5155/eurjchem.2.2.178-188.240

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.