European Journal of Chemistry

Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies

Crossmark


Main Article Content

Niteen Borane
Amar Ghanshyam Deshmukh
Nidhi Harnesh Oza
Rajamouli Boddula
Paresh Narayan Patel

Abstract

Chalcones are versatile scaffolds for the synthesis of various heterocyclic systems with commercial utility. This work describes the synthesis of five novel chalcone derivatives. Syntheses were performed by a simple one-pot, straightforward Claisen-Schmidt condensation catalyzed with pyrrolidine and KOH. The chalcones were prepared by condensation of 4-formylbenzonitrile with different aromatic ketones at room temperature. The structures of all compounds have been investigated by FT-IR, NMR, and HR-MS spectroscopy. In addition, one chalcone structure was characterized by single-crystal XRD study. Crystal data for C21H15NO2 (Ch2): monoclinic, space group P21/c (no. 14), a = 6.5694(3) Å, b = 33.2697(15) Å, c = 7.4516(4) Å, β = 97.563(2)°, V = 1614.47(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.083 mm-1, Dcalc = 1.289 g/cm3, 16000 reflections measured (4.898° ≤ 2Θ ≤ 49.99°), 2822 unique (Rint = 0.0249, Rsigma = 0.0196) which were used in all calculations. The final R1 was 0.0484 (I > 2σ(I)) and wR2 was 0.1257 (all data). The absorption maxima of all novel products were evaluated by UV-visible spectroscopy. These well-established structures of all newly prepared chalcone scaffolds with reactive functional groups (i.e. nitrile and 2-propenone) can be exploited as a crucial intermediate in the synthesis of new heterocyclic scaffolds with fluorescence and other applications.


icon graph This Abstract was viewed 440 times | icon graph Article PDF downloaded 220 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Borane, N.; Deshmukh, A. G.; Oza, N. H.; Boddula, R.; Patel, P. N. Newer Chalcone Scaffolds With Reactive Functional Groups: Process, Spectral and Single Crystal XRD Studies. Eur. J. Chem. 2023, 14, 297-302.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of chalcones via Claisen-Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal. Commun. 2008, 9, 1924-1927.
https://doi.org/10.1016/j.catcom.2008.03.023

[2]. Durairaj, M.; Sivakumar, S.; Gnanendra, S. Chemical synthesis of chalcones by claisen-Schmidt condensation reaction and its characterization. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2311-2315.
https://doi.org/10.22214/ijraset.2018.5379

[3]. Bohm, B. A. Introduction to flavonoids; CRC Press: Boca Raton, FL, 1999.

[4]. Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev. 2020, 40, 2049-2084.
https://doi.org/10.1002/med.21698

[5]. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017, 17, 3146-3169.
https://doi.org/10.2174/1568026617666170914160446

[6]. Rocha, S.; Ribeiro, D.; Fernandes, E.; Freitas, M. A systematic review on anti-diabetic properties of chalcones. Curr. Med. Chem. 2020, 27, 2257-2321.
https://doi.org/10.2174/0929867325666181001112226

[7]. Xu, S.; Chen, M.; Chen, W.; Hui, J.; Ji, J.; Hu, S.; Zhou, J.; Wang, Y.; Liang, G. Chemopreventive effect of chalcone derivative, L2H17, in colon cancer development. BMC Cancer 2015, 15, 870.
https://doi.org/10.1186/s12885-015-1901-x

[8]. Lin, Y.; Zhang, M.; Lu, Q.; Xie, J.; Wu, J.; Chen, C. A novel chalcone derivative exerts anti-inflammatory and anti-oxidant effects after acute lung injury. Aging (Albany NY) 2019, 11, 7805-7816.
https://doi.org/10.18632/aging.102288

[9]. Henry, E. J.; Bird, S. J.; Gowland, P.; Collins, M.; Cassella, J. P. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J. Antibiot. (Tokyo) 2020, 73, 299-308.
https://doi.org/10.1038/s41429-020-0280-y

[10]. de Mello, M. V. P.; Abrahim-Vieira, B. de A.; Domingos, T. F. S.; de Jesus, J. B.; de Sousa, A. C. C.; Rodrigues, C. R.; Souza, A. M. T. de A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem. 2018, 150, 920-929.
https://doi.org/10.1016/j.ejmech.2018.03.047

[11]. Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm. (Weinheim) 2020, 353, e1900350.
https://doi.org/10.1002/ardp.201900350

[12]. Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Poojary, B. Structural and optical properties of a new chalcone single crystal. J. Cryst. Growth 2012, 354, 182-187.
https://doi.org/10.1016/j.jcrysgro.2012.06.006

[13]. Anuradha, G.; Vasuki, G.; Khan, I. A.; Kulkarni, M. V. Crystal and Molecular Structure of N-[2-(6-Methoxy-2-oxo-2H-Chromen-4-yl-Benzofuran-3-yl]- Benzamide. Cryst. Struct. Theory Appl. 2012, 01, 107-113.
https://doi.org/10.4236/csta.2012.13020

[14]. Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew. Chem. Int. Ed Engl. 2015, 54, 7181-7184.
https://doi.org/10.1002/anie.201502180

[15]. Tandel, S. N.; Deshmukh, A. G.; Rana, B. U.; Patel, P. N. Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor. Chem. Phys. Lett. 2023, 817, 140426.
https://doi.org/10.1016/j.cplett.2023.140426

[16]. Ali, M. K. M.; Elzupir, A. O.; Ibrahem, M. A.; Suliman, I. I.; Modwi, A.; Idriss, H.; Ibnaouf, K. H. Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik (Stuttg.) 2017, 145, 529-533.
https://doi.org/10.1016/j.ijleo.2017.08.044

[17]. Dhanaraj, P. V.; Rajesh, N. P.; Vinitha, G.; Bhagavannarayana, G. Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate. Mater. Res. Bull. 2011, 46, 726-731.
https://doi.org/10.1016/j.materresbull.2011.01.013

[18]. STOE IPDS diffractometer control software, version 2.87. Stoe & Cie GmbH Darmstadt, Germany.

[19]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 2005, 38, 381-388.
https://doi.org/10.1107/S002188980403225X

[20]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[21]. Bruker (2012). APEX. Bruker AXS Inc., Madison, Wisconsin, USA.

[22]. Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[23]. Bruker (2012). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

[24]. Farrugia, L. J. WinGXandORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[25]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
https://doi.org/10.1107/S002188980600731X

[26]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[27]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[28]. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487-1487.
https://doi.org/10.1107/S0021889803021800

[29]. Patel, P. N.; Chadha, A. Synthesis, single crystal structure and spectroscopic aspects of Benzo[b]thiophene-3-carbaldehyde based chalcones. J. Chem. Crystallogr. 2016, 46, 245-251.
https://doi.org/10.1007/s10870-016-0653-z

[30]. Rai, S.; Patel, P. N.; Chadha, A. Preparation, characterisation, and crystal structure analysis of (2E,2′E)-3,3′-(1,4-phenylene)bis(1-(2-aminophenyl)prop-2-en-1-one. Crystallogr. Rep. 2016, 61, 1086-1089.
https://doi.org/10.1134/S1063774516070099

[31]. Patel, P. N.; Chadha, A. A simple metal free highly diastereoselective synthesis of heteroaryl substituted (±) cyclohexanols by a branched domino reaction. Tetrahedron 2018, 74, 204-216.
https://doi.org/10.1016/j.tet.2017.11.070

[32]. Tandel, S.; Patel, N. C.; Kanvah, S.; Patel, P. N. An efficient protocol for the synthesis of novel hetero-aryl chalcone: A versatile synthon for several heterocyclic scaffolds and sensors. J. Mol. Struct. 2022, 1269, 133808.
https://doi.org/10.1016/j.molstruc.2022.133808

[33]. Patel, P. N.; Desai, D. H.; Patel, N. C.; Deshmukh, A. G. Efficient multicomponent processes for synthesis of novel poly-nuclear hetero aryl substituted terpyridine scaffolds: Single crystal XRD study. J. Mol. Struct. 2022, 1250, 131737.
https://doi.org/10.1016/j.molstruc.2021.131737

[34]. Patel, P. N.; Desai, D. H.; Patel, N. C. Synthesis, spectral, and single crystal XRD studies of novel terpyridine derivatives of benzofuran-2-carbaldehyde and their Cu(II) complex. Russ. J. Coord. Chem. 2021, 47, 909-914.
https://doi.org/10.1134/S1070328421120010

Supporting Agencies

The work was financially supported by the GUJCOST, Government of India (Project No. GUJCOST/2020-21/2012).
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).