European Journal of Chemistry

Chemo-profiling of methanolic and ether oleoresins of Salvia coccinea and in vitro pesticidal evaluation with in silico molecular docking and ADME/Tox studies

Crossmark


Main Article Content

Kirti Nagarkoti
Om Prakash
Avneesh Rawat
Tanuja Kabdal
Ravendra Kumar
Ravi Mohan Srivastava
Satya Kumar
Dharmendra Singh Rawat

Abstract

The objective of the present study was to examine the chemical compositions of Salvia coccinea oleoresins prepared in methanol and petroleum ether. GC-MS analysis of Salvia coccinea methanolic oleoresin (SCMO) and Salvia coccinea ether oleoresin (SCEO) resulted in the identification of 15 and 12 constituents, comprising 84.7 and 81.2% of the total composition, respectively. Both SCMO and SCEO varied in their chemical composition in terms of quantity, namely, oleic acid (22.3-25.9%), palmitic acid (8.9-8.4%), stigmasta-3,5-dien-7-one (3.4-11.8%), stigmasterol acetate (3.5-5.3%), neophytadiene (4.8-1.7%), phytol (1.6-7.8%) and phthalic acid (2.1-3.1%). In addition to the qualitative differences between SCMO and SCEO concomitantly, both oleoresins were examined for their pesticidal activities. Oleoresins demonstrated significant nematicidal activity against Meloidogyne incognita, insecticidal activity against Lipaphis erysimi, antifungal activity against Curvularia lunata, and antibacterial activity against Staphylococcus aureus. For nematicidal activity, SCMO and SCEO exhibited a high mortality of 65.66±1.69 and 54.33±1.24 and egg hatching inhibition of 26.33±1.20and 33.33±1.24 at 200 μg/mL. Similarly, SCMO and SCEO exhibited excellent insecticidal activity with 94.87±1.44 % and 86.75±1.85 %   mortality at 1000 μg/mL. However, both oleoresins exhibited moderate antifungal and antibacterial activities compared to standards. Due to the quantitative difference in chemical composition and the presence of several phytoconstituents that were absent in SCEO, SCMO displayed stronger pesticidal effects than SCEO. To estimate the binding energy and structure-activity relationships between chemical constituents and pesticidal activities, in silico molecular docking and ADME/Tox studies have also been performed using a web-based online tool. On the basis of the present study, it is inferred that the herb Salvia coccinea might be a good source of phytochemicals and can be used for the development of herbal-based pesticides/formulations after proper clinical trials.


icon graph This Abstract was viewed 378 times | icon graph Article PDF downloaded 161 times

How to Cite
(1)
Nagarkoti, K.; Prakash, O.; Rawat, A.; Kabdal, T.; Kumar, R.; Srivastava, R. M.; Kumar, S.; Rawat, D. S. Chemo-Profiling of Methanolic and Ether Oleoresins of Salvia Coccinea and in Vitro Pesticidal Evaluation With in Silico Molecular Docking and ADME Tox Studies. Eur. J. Chem. 2023, 14, 211-222.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Malik, M. K.; Kumar, V.; Sharma, P. P.; Singh, J.; Fuloria, S.; Subrimanyan, V.; Fuloria, N. K.; Kumar, P. Improvement in digestion resistibility of mandua starch (Eleusine coracana) after cross-linking with epichlorohydrin. ACS Omega 2022, 7, 27334-27346.
https://doi.org/10.1021/acsomega.2c02327

[2]. Malik, M. K.; Bhatt, P.; Kumar, T.; Singh, J.; Kumar, V.; Faruk, A.; Fuloria, S.; Fuloria, N. K.; Subrimanyan, V.; Kumar, S. Significance of chemically derivatized starch as drug carrier in developing novel drug delivery devices. Nat. Prod. J. 2022, 12.

[3]. Agboola, A. R.; Okonkwo, C. O.; Agwupuye, E. I.; Mbeh, G. Biopesticides and conventional pesticides: Comparative review of mechanism of action and future perspectives. AROC Agric. 2022, 1, 14-32.
https://doi.org/10.53858/arocagr01011432

[4]. Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148.
https://doi.org/10.3389/fpubh.2016.00148

[5]. Noorbakhsh, F.; Zare, S.; Firuzi, O.; Sakhteman, A.; Chandran, J. N.; Schneider, B.; Jassbi, A. R. Phytochemical Analysis and Biological Activity of Salvia compressa Vent. Iran. J. Pharm. Res. 2022, 21, e127031.
https://doi.org/10.5812/ijpr-127031

[6]. Nagarkoti, K.; Kanyal, J.; Prakash, O.; Kumar, R.; Rawat, D. S.; Pant, A. K. Ajuga L.: A systematic review on chemical composition, phytopharmacological and biological potential. Curr. Bioact. Compd. 2021, 17, e010621189843.
https://doi.org/10.2174/1573407216999210101230234

[7]. Farnsworth, N. R. The role of ethnopharmacology in drug development. Ciba Found. Symp. 1990, 154, 2-11; discussion 11-21.
https://doi.org/10.1002/9780470514009.ch2

[8]. Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods - a review. Czech J. Food Sci. 2016, 34, 377-390.
https://doi.org/10.17221/504/2015-CJFS

[9]. Joshi, M.; Kumar, R.; Prakash, O.; Pant, A. K.; Rawat, D. S. Chemical composition and biological activities of Nepeta hindostana (Roth) Haines, Nepeta graciliflora Benth. and Nepeta cataria L. from India. J. Herb. Drugs 2021, 12, 35-46.

[10]. Özcan, M.; Tzakou, O.; Couladis, M. Essential oil composition of Turkish herbal tea (Salvia aucheri Bentham var.canescens Boiss. & Heldr.): Essential oil of salvia aucherivar.canescens. Flavour Fragr. J. 2003, 18, 325-327.
https://doi.org/10.1002/ffj.1229

[11]. Lamien-Meda, A.; Nell, M.; Lohwasser, U.; Börner, A.; Franz, C.; Novak, J. Investigation of antioxidant and rosmarinic acid variation in the sage collection of the genebank in Gatersleben. J. Agric. Food Chem. 2010, 58, 3813-3819.
https://doi.org/10.1021/jf903993f

[12]. Roby, M. H. H.; Sarhan, M. A.; Selim, K. A.-H.; Khalel, K. I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827-831.
https://doi.org/10.1016/j.indcrop.2012.08.029

[13]. Ryan, D.; Antolovich, M.; Prenzler, P.; Robards, K.; Lavee, S. Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. (Amsterdam) 2002, 92, 147-176.
https://doi.org/10.1016/S0304-4238(01)00287-4

[14]. Eghbaliferiz, S.; Soheili, V.; Tayarani-Najaran, Z.; Asili, J. Antimicrobial and cytotoxic activity of extracts from Salvia tebesana Bunge and Salvia sclareopsis Bornm cultivated in Iran. Physiol. Mol. Biol. Plants 2019, 25, 1083-1089.
https://doi.org/10.1007/s12298-019-00652-w

[15]. Laborda, R.; Manzano, I.; Gamón, M.; Gavidia, I.; Pérez-Bermúdez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2013, 48, 106-110.
https://doi.org/10.1016/j.indcrop.2013.04.011

[16]. Pitarokili, D.; Couladis, M.; Petsikos-Panayotarou, N.; Tzakou, O. Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J. Agric. Food Chem. 2002, 50, 6688-6691.
https://doi.org/10.1021/jf020422n

[17]. Delange, D. M.; Rico, C. L. M.; Canavaciolo, V. L. G.; Pérez, R. S.; Leyes, E. A. R. Fatty acid composition of seed oil from Salvia coccinea Grown in Cuba. Anal. Chem. Lett. 2012, 2, 114-117.
https://doi.org/10.1080/222979282000.10648257

[18]. Onayade, O. A.; Scheffer, J. J. C.; Svendsen, A. B. Polynuclear aromatic compounds and other constituents of the herb essential oil of Salvia coccinea juss. ex murr. Flavour Fragr. J. 1991, 6, 281-289.
https://doi.org/10.1002/ffj.2730060408

[19]. Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem. 2004, 84, 519-525.
https://doi.org/10.1016/S0308-8146(03)00267-X

[20]. Prakash, O.; Goswami, S.; Kanyal, J.; Kumar, R.; Rawat, D. S.; Srivastava, R. M.; Pant, A. K. Chemical Composition, Antioxidant, Antifungal and Antifeedant Activity of the Salvia reflexa Hornem. Essential Oil. Asian J. Appl. Sci. 2019, 12, 185-191.
https://doi.org/10.3923/ajaps.2019.185.191

[21]. Shanmugam, G.; Sundaramoorthy, A.; Shanmugam, N. Biosynthesis of silver nanoparticles from leaf extract of Salvia coccinea and its effects of anti-inflammatory potential in human monocytic THP-1 cells. ACS Appl. Bio Mater. 2021, 4, 8433-8442.
https://doi.org/10.1021/acsabm.1c00963

[22]. Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation, 2007.

[23]. Kabdal, T.; Himani; Kumar, R.; Prakash, O.; Nagarkoti, K.; Rawat, D. S.; Srivastava, R. M.; Kumar, S.; Dubey, S. K. Seasonal variation in the essential oil composition and biological activities of Thymus linearis Benth. Collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 2022, 103, 104449.
https://doi.org/10.1016/j.bse.2022.104449

[24]. Cole, R. A. Isolation of a chitin-binding lectin, with insecticidal activity in chemically-defined synthetic diets, from two wild brassica species with resistance to cabbage aphid Brevicoryne brassicae. Entomol. Exp. Appl. 1994, 72, 181-187.
https://doi.org/10.1111/j.1570-7458.1994.tb01816.x

[25]. Rawat, A.; Prakash, O.; Kumar, R.; Arya, S.; Srivastava, R. M. Hedychium spicatum Sm.: Chemical composition with biological activities of methanolic and ethylacetate oleoresins from rhizomes. J. Biol. Act. Prod. Nat. 2021, 11, 269-288.
https://doi.org/10.1080/22311866.2021.1923572

[26]. Arya, S.; Kumar, R.; Prakash, O.; Kumar, S.; Mahawer, S. K.; Chamoli, S.; Kumar, P.; Srivastava, R. M.; de Oliveira, M. S. Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules 2022, 27, 4833.
https://doi.org/10.3390/molecules27154833

[27]. Kanyal, J.; Prakash, O.; Kumar, R.; Rawat, D. S.; Srivastava, R. M.; Singh, R. P.; Pant, A. K. Study on comparative chemical composition and biological activities in the essential oils from different parts of coleus barbatus (Andrews) bent. Ex G. don. J. Essent. Oil-Bear. Plants 2021, 24, 808-825.
https://doi.org/10.1080/0972060X.2021.1958701

[28]. Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71-79.
https://doi.org/10.1016/j.jpha.2015.11.005

[29]. Chawla, M.; Kaushik, R. D.; Malik, M. K.; Pundir, V.; Singh, J.; Rehmaan, H. Development and optimization of RofA-PAMAM dendrimer complex materials for sustained drug delivery. Mater. Today Commun. 2022, 33, 104881.
https://doi.org/10.1016/j.mtcomm.2022.104881

[30]. Samant, L.; Halder, S.; Dhorajiwala, T. Multiple docking analysis and In silico absorption, distribution, metabolism, excretion, and toxicity screening of anti-leprosy phytochemicals and dapsone against dihydropteroate synthase of Mycobacterium leprae. Int. J. Mycobacteriol. 2019, 8, 229.
https://doi.org/10.4103/ijmy.ijmy_123_19

[31]. Andrade-Jorge, E.; Rodríguez, J. E.; Lagos-Cruz, J. A.; Rojas-Jiménez, J. I.; Estrada-Soto, S. E.; Gallardo-Ortíz, I. A.; Trujillo-Ferrara, J. G.; Villalobos-Molina, R. Phthalamide derivatives as ACE/AChE/BuChE inhibitors against cardiac hypertrophy: an in silico, in vitro, and in vivo modeling approach. Med. Chem. Res. 2021, 30, 964-976.
https://doi.org/10.1007/s00044-021-02707-8

[32]. Brunskole, M.; Štefane, B.; Zorko, K.; Anderluh, M.; Stojan, J.; Lanišnik Rižner, T.; Gobec, S. Towards the first inhibitors of trihydroxynaphthalene reductase from Curvularia lunata: Synthesis of artificial substrate, homology modelling and initial screening. Bioorg. Med. Chem. 2008, 16, 5881-5889.
https://doi.org/10.1016/j.bmc.2008.04.066

[33]. Al-Dhahli, A. S.; Al-Hassani, F. A.; Mohammed Alarjani, K.; Mohamed Yehia, H.; Al Lawati, W. M.; Najmul Hejaz Azmi, S.; Alam Khan, S. Essential oil from the rhizomes of the Saudi and Chinese Zingiber officinale cultivars: Comparison of chemical composition, antibacterial and molecular docking studies. J. King Saud Univ. Sci. 2020, 32, 3343-3350.
https://doi.org/10.1016/j.jksus.2020.09.020

[34]. Domínguez-Villa, F. X.; Durán-Iturbide, N. A.; Ávila-Zárraga, J. G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem. 2021, 106, 104497.
https://doi.org/10.1016/j.bioorg.2020.104497

[35]. Han, Y.; Zhang, J.; Hu, C. Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434.
https://doi.org/10.3389/fphar.2019.00434

[36]. Azcan, N.; Ertan, A.; Demirci, B.; Baser, K. H. C. Fatty acid composition of seed oils of twelve Salvia species growing in turkey. Chem. Nat. Compd. 2004, 40, 218-221.
https://doi.org/10.1023/B:CONC.0000039127.56323.3e

[37]. Gören, A. C.; Kiliç, T.; Dirmenci, T.; Bilsel, G. Chemotaxonomic evaluation of Turkish species of Salvia: Fatty acid compositions of seed oils. Biochem. Syst. Ecol. 2006, 34, 160-164.
https://doi.org/10.1016/j.bse.2005.09.002

[38]. Yener, I. Determination of antioxidant, cytotoxic, anticholinesterase, antiurease, antityrosinase, and antielastase activities and aroma, essential oil, fatty acid, phenolic, and terpenoid-phytosterol contents of Salvia poculata. Ind. Crops Prod. 2020, 155, 112712.
https://doi.org/10.1016/j.indcrop.2020.112712

[39]. Yalcin, H.; Ozturk, I.; Tulukcu, E.; Sagdic, O. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of Clary sage seed (Salvia sclarea L.). J. Food Sci. 2011, 76, C1056-C1061.
https://doi.org/10.1111/j.1750-3841.2011.02331.x

[40]. El-Nagdi, W. M. A.; Youssef, M. M. A.; Dawood, M. G. Nematicidal activity of certain medicinal plant residues in relation to controlling root knot nematode, Meloidogyne incognita on Cowpea. Appl. Sci. Rep. 2017, 20, 35-38, https://papers.ssrn.com/abstract=3201452.

[41]. Zhang, W.-P.; Ruan, W.-B.; Deng, Y.-Y.; Gao, Y.-B. Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 11631-11637.
https://doi.org/10.1021/jf3036885

[42]. Panda, S. K.; Das, R.; Mai, A. H.; De Borggraeve, W. M.; Luyten, W. Nematicidal activity of Holigarna caustica (Dennst.) Oken fruit is due to linoleic acid. Biomolecules 2020, 10, 1043
https://doi.org/10.3390/biom10071043

[43]. Faizi, S.; Fayyaz, S.; Bano, S.; Yawar Iqbal, E.; Siddiqi, H.; Naz, A. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. J. Agric. Food Chem. 2011, 59, 9080-9093.
https://doi.org/10.1021/jf201611b

[44]. Moghaddam, M.; Pirbalouti, A. G.; Babaei, K.; Farhadi, N. Chemical Compositions of Essential Oil from the Aerial Parts of Tagetes patula L. and Tagetes erecta L. Cultivated in Northeastern Iran. J. Essent. Oil-Bear. Plants 2021, 24, 990-997.
https://doi.org/10.1080/0972060X.2021.2005691

[45]. Dolma, S. K.; Singh, P. P.; Reddy, S. G. E. Insecticidal and enzyme inhibition activities of leaf/bark extracts, fractions, seed oil and isolated compounds from Triadica sebifera (L.) small against Aphis craccivora Koch. Molecules 2022, 27, 1967.
https://doi.org/10.3390/molecules27061967

[46]. Harizia, A.; Benguerai, A.; Elouissi, A.; Mahi, T.; Bonal, R. Chemical composition and biological activity of Salvia officinalis L. essential oil against Aphis fabae Scopoli (Hemiptera: Aphididae). J. Plant Dis. Prot. (2006) 2021, 128, 1547-1556.
https://doi.org/10.1007/s41348-021-00525-z

[47]. Almeida, J.; Godoy, K. Alternative Control With Oils and Plant Extracts of the Pulgon Lipaphis erysimi (Kaltenbach, 1843) on Couve Brassica oleracea L. var. acephala, in the Municipality of Cruzeiro Do Sul, Acre; https://www.researchsquare.com/article/rs-2208005/v2. Research Square 2022.
https://doi.org/10.21203/rs.3.rs-2208005/v1

[48]. Aziz, W.; Shalaby, M.; Tawfik, W. Efficacy of some Essential Oils on Cowpea Aphid, Aphis craccivora Koch (Hemiptera: Aphididae). Journal of Plant Protection and Pathology 2018, 9, 827-830.
https://doi.org/10.21608/jppp.2018.44074

[49]. Garza, B. A. A.; Arroyo, J. L.; González, G. G.; González, E. G.; González, E. G.; de Torres, N. W.; Aranda, R. S. Anti-fungal and Anti-Mycobacterial activity of plants of Nuevo Leon, Mexico. Pak. J. Pharm. Sci. 2017, 30, 17-21.

[50]. Zaccardelli, M.; Pane, C.; Caputo, M.; Durazzo, A.; Lucarini, M.; Silva, A. M.; Severino, P.; Souto, E. B.; Santini, A.; De Feo, V. Sage species case study on a spontaneous Mediterranean plant to control phytopathogenic fungi and bacteria. Forests 2020, 11, 704.
https://doi.org/10.3390/f11060704

[51]. Shipar, M. Physical and chemical characteristics, major fatty acids, antimicrobial activity and toxicity analysis of red shrimp (Metapenaeus brevicornis) brain lipid. Food Chem. 2007, 102, 649-655.
https://doi.org/10.1016/j.foodchem.2006.05.044

[52]. Singh, G.; Maurya, S.; de Lampasona, M. P.; Catalan, C. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745-752.
https://doi.org/10.1016/j.foodcont.2005.03.010

[53]. Bilel, H.; Boubakri, L.; Zagrouba, F.; Hamdi, N. Chemical composition, antimicrobial and antioxidant activities of the essentials oils from flowers of Salvia sharifii. Eur. J. Chem. 2015, 6, 301-304.
https://doi.org/10.5155/eurjchem.6.3.301-304.1264

[54]. Karamian, R.; Asadbegy, M.; Pakzad, R. Essential oil compositions and in vitro antioxidant and antibacterial activities of the methanol extracts of two Salvia species (Lamiaceae) from Iran. Int. J. Agric. Crop Sci. 2013, 5(11), 1171, https://www.researchgate.net/publication/ 235430188_Essential_oil_compositions_and_in_vitro_antioxidant_and_antibacterial_activities_of_the_methanol_extracts_of_two_Salvia_species_Lamiaceae_from_Iran (accessed January 18, 2023).

[55]. Mahdavian Mehr, H.; Hosseini, Z.; Haddad Khodaparast, M. H.; Edalatian, M. R. Study on the antimicrobial effect of Salvia leriifolia (nowroozak) leaf extract powder on the growth of staphylococcus aureus in hamburger: Study on the antimicrobial effect of Salvia leriifolia. J. Food Saf. 2010, 30, 941-953.
https://doi.org/10.1111/j.1745-4565.2010.00253.x

[56]. Ozkan, G.; Sagdic, O.; Gokturk, R. S.; Unal, O.; Albayrak, S. Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica. Lebenson. Wiss. Technol. 2010, 43, 186-190.
https://doi.org/10.1016/j.lwt.2009.06.014

[57]. Anjali, K. P.; Sangeetha, B. M.; Devi, G.; Raghunathan, R.; Dutta, S. Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): The compound characterization and functional applications in medicine-a comparative study. J. Photochem. Photobiol. B 2019, 200, 111622.
https://doi.org/10.1016/j.jphotobiol.2019.111622

[58]. Adnan, M.; Nazim Uddin Chy, M.; Mostafa Kamal, A. T. M.; Azad, M.; Paul, A.; Uddin, S.; Barlow, J.; Faruque, M.; Park, C.; Cho, D. Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. Prostrata (D.don) & Mondal leaves through in vivo, in vitro, and in silico approaches. Molecules 2019, 24, 1367.
https://doi.org/10.3390/molecules24071367

[59]. Banerjee, P.; Ulker, O. C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods 2022, 32, 542-548.
https://doi.org/10.1080/15376516.2022.2053623

[60]. Kumar, V.; Kar, S.; De, P.; Roy, K.; Leszczynski, J. Identification of potential antivirals against 3CLpro enzyme for the treatment of SARS-CoV-2: A multi-step virtual screening study. SAR QSAR Environ. Res. 2022, 33, 357-386.
https://doi.org/10.1080/1062936X.2022.2055140

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).