European Journal of Chemistry

A square planar copper(II) complex noncovalently conjugated with a p-cresol for bioinspired catecholase activity

Crossmark


Main Article Content

Subham Mukherjee
Gayetri Sarkar
Abhranil De
Bhaskar Biswas

Abstract

This work presents the synthesis of an unprecedented p-cresol-conjugated copper(II) complex as a p-cresol-coupled polydentate ligand, its crystal structure, and catecholase activity. X-ray crystallography reveals that the Cu(II) centre adopts a nearly planar coordination geometry. Crystal data for C14H13Cu0.5O3: Monoclinic, space group P21/c (no. 14), a = 5.9204(2) Å, b = 21.5615(10) Å, c = 9.0715(4) Å, β = 91.266(4)°, = 1157.72(8) Å3, Z = 4, μ(MoKα) = 0.987 mm-1, Dcalc = 1.498 g/cm3, 12647 reflections measured (6.884° ≤ 2Θ ≤ 63.42°), 3233 unique (Rint = 0.0618, Rsigma = 0.0512) which were used in all calculations. The final R1 was 0.0710 (I > 2σ(I)) and wR2 was 0.2173 (all data). The crystallized p-cresol was localized in complex units through intermolecular O···H interactions and formed a 3D supramolecular framework employing short-ranged O···H and C-H···π interactions in the solid state. The copper(II) complex has been evaluated as a bioinspired catalyst in the oxidative transformation of 3,5-di-tert-butylcatechol (DTBC) to o-benzoquinone in acetonitrile with a high turnover number, 2.26´104 h–1. Electrochemical analysis of the copper(II) complex in the presence of DTBC recommends the generation of a catechol/o-benzosemiquinone redox couple during catalytic oxidation with the generation of hydrogen peroxide as a byproduct.


icon graph This Abstract was viewed 295 times | icon graph Article PDF downloaded 123 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Mukherjee, S.; Sarkar, G.; De, A.; Biswas, B. A Square Planar copper(II) Complex Noncovalently Conjugated With a P-Cresol for Bioinspired Catecholase Activity. Eur. J. Chem. 2023, 14, 499-506.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Debnath, A.; Diyali, S.; Das, M.; Panda, S. J.; Mondal, D.; Dhak, D.; Purohit, C. S.; Ray, P. P.; Biswas, B. Harnessing the hydrogen evolution reaction (HER) through the electrical mobility of an embossed Ag(i)-molecular cage and a Cu(ii)-coordination polymer. Dalton Trans. 2023, 52, 8850-8856.
https://doi.org/10.1039/D3DT01073B

[2]. Kundu, S.; Saha, S.; Panda, S. J.; Purohit, C. S.; Biswas, B. Tailor-made isostructural copper(ii) and nickel(ii) complexes with a newly designed (N,N)-donor scaffold as functional mimics of alkaline phosphatase. New J Chem 2023, 47, 5894-5902.
https://doi.org/10.1039/D2NJ06127A

[3]. Mudi, P. K.; Mahato, R. K.; Joshi, M.; Shit, M.; Choudhury, A. R.; Das, H. S.; Biswas, B. Copper(II) complexes with a benzimidazole functionalized Schiff base: Synthesis, crystal structures, and role of ancillary ions in phenoxazinone synthase activity. Appl. Organomet. Chem. 2021, 35, e6211.
https://doi.org/10.1002/aoc.6211

[4]. Garai, M.; Dey, D.; Yadav, H. R.; Choudhury, A. R.; Maji, M.; Biswas, B. Catalytic fate of two copper complexes towards phenoxazinone synthase and catechol dioxygenase activity. ChemistrySelect 2017, 2, 11040-11047.
https://doi.org/10.1002/slct.201702113

[5]. Tapiero, H.; Townsend, D. M.; Tew, K. D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386-398.
https://doi.org/10.1016/S0753-3322(03)00012-X

[6]. Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Acc. Chem. Res. 2002, 35, 183-191.
https://doi.org/10.1021/ar990019a

[7]. Halder, J.; Tamuli, P.; Bhaduri, A. N. Isolation and characterization of polyphenol oxidase from Indian tea leaf (Camellia sinensis). J. Nutr. Biochem. 1998, 9, 75-80.
https://doi.org/10.1016/S0955-2863(97)00170-8

[8]. Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem. Soc. Rev. 2006, 35, 814-840.
https://doi.org/10.1039/b516250p

[9]. Drewry, J. A.; Gunning, P. T. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord. Chem. Rev. 2011, 255, 459-472.
https://doi.org/10.1016/j.ccr.2010.10.018

[10]. Sorenson, J. R. J. 6 copper complexes offer a physiological approach to treatment of chronic diseases. In Progress in Medicinal Chemistry; Elsevier, 1989; pp. 437-568.
https://doi.org/10.1016/S0079-6468(08)70246-7

[11]. Jayamani, A.; Sengottuvelan, N.; Chakkaravarthi, G. Synthesis, structural, electrochemical, DNA interaction, antimicrobial and molecular docking studies on dimeric copper(II) complexes involving some potential bidentate ligands. Polyhedron 2014, 81, 764-776.
https://doi.org/10.1016/j.poly.2014.05.076

[12]. Elo, H.; Kuure, M.; Pelttari, E. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity. Eur. J. Med. Chem. 2015, 92, 750-753.
https://doi.org/10.1016/j.ejmech.2015.01.041

[13]. Costa Pessoa, J.; Cavaco, I.; Correia, I.; Tomaz, I.; Duarte, T.; Matias, P. M. Oxovanadium(IV) complexes with aromatic aldehydes. J. Inorg. Biochem. 2000, 80, 35-39.
https://doi.org/10.1016/S0162-0134(00)00037-4

[14]. Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L. Copper active sites in biology. Chem. Rev. 2014, 114, 3659-3853.
https://doi.org/10.1021/cr400327t

[15]. Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Electronic structures of active sites in copper proteins: contributions to reactivity. Chem. Rev. 1992, 92, 521-542.
https://doi.org/10.1021/cr00012a003

[16]. Punniyamurthy, T.; Rout, L. Recent advances in copper-catalyzed oxidation of organic compounds. Coord. Chem. Rev. 2008, 252, 134-154.
https://doi.org/10.1016/j.ccr.2007.04.003

[17]. Selmeczi, K.; Réglier, M.; Giorgi, M.; Speier, G. Catechol oxidase activity of dicopper complexes with N-donor ligands☆. Coord. Chem. Rev. 2003, 245, 191-201.
https://doi.org/10.1016/j.cct.2003.08.002

[18]. Agilent (2017). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.

[19]. Sheldrick, G. M. SHELXT- Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[20]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[21]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[22]. Mukherjee, S.; Pal, C. K.; Kotakonda, M.; Joshi, M.; Shit, M.; Ghosh, P.; Choudhury, A. R.; Biswas, B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J. Mol. Struct. 2021, 1245, 131057.
https://doi.org/10.1016/j.molstruc.2021.131057

[23]. Dey, D.; De, A.; Yadav, H. R.; Guin, P. S.; Choudhury, A. R.; Kole, N.; Biswas, B. An oxido‐bridged diiron(II) complex as functional model of catechol dioxygenase. ChemistrySelect 2016, 1, 1910-1916.
https://doi.org/10.1002/slct.201600575

[24]. De, A.; Dey, D.; Yadav, H. R.; Maji, M.; Rane, V.; Kadam, R. M.; Choudhury, A. R.; Biswas, B. Unprecedented hetero-geometric discrete copper(II) complexes: Crystal structure and bio-mimicking of Catecholase activity. J. Chem. Sci. (Bangalore) 2016, 128, 1775-1782.
https://doi.org/10.1007/s12039-016-1186-x

[25]. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. Absolute pKa determinations for substituted phenols. J. Am. Chem. Soc. 2002, 124, 6421-6427.
https://doi.org/10.1021/ja012474j

[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. De, A.; Garai, M.; Yadav, H. R.; Choudhury, A. R.; Biswas, B. Catalytic promiscuity of an iron(II)-phenanthroline complex. Appl. Organomet. Chem. 2017, 31, e3551.
https://doi.org/10.1002/aoc.3551

[28]. Leussing, D. L.; Bai, K. S. N-Salicylideneglycinato complexes. Comparison with pyridoxal. Anal. Chem. 1968, 40, 575-581.
https://doi.org/10.1021/ac60259a019

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).