European Journal of Chemistry

Synthesis and characterization of a novel eight-membered cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane and 4,4ˈ-bipyridine, 1D adduct

Crossmark


Main Article Content

Okpara Sergeant Bull
Chioma Don-Lawson
Ugo Nweke-Maraizu

Abstract

Simple adducts of cyclo-diboradisiloxanes (Lewis acid) and amines (Lewis base) have been reported in the literature. However, the method for the synthesis of an 8-membered cyclo-diboratetrasiloxane, as well as its adducts, was modified in this report to save cost and achieve new results. In the literature, the synthesis of cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane (Ph6B2Si2O4) (3) has been reported using diphenylsilanediol and phenylboronic acid and a Dean-Stark apparatus for the removal of water. However, in this study, molecular sieves were used for the facile removal of water, and the crude product recrystallized from diethyl ether and petroleum ether (3:1 ratio) to give compound 3. Compound 3 was reacted with 4,4’-bipyridine in a mixture of diethyl ether and petroleum ether solvents at reflux to give a 1D polymer [Ph6B2Si2O4]·L1 (4). Furthermore, compound 4 was characterized with various characterization methods such as single-crystal XRD, nuclear magnetic resonance, and FT-IR spectroscopy. The single crystal X-ray diffraction studies shows that the title compound crystalizes in the triclinic crystal system in the centrosymmetric space group P-1, a = 10.9372(4) Å, b = 18.4221(6) Å, c = 19.4697(6) Å, α = 70.533(3)°, β = 86.476(3)°, γ = 88.517(3)°, V = 3691.6(2) Å3, Z = 2, T = 173.0 K, μ(MoKα) = 0.122 mm-1, Dcalc = 1.204 g/cm3, 21463 reflections measured (5.196° ≤ 2Θ ≤ 56.45°), 14525 unique (Rint = 0.0185, Rsigma = 0.0483) which were used in all calculations, the final R1 was 0.0721 (I > 2σ(I)) and wR2 was 0.2143 (all data)  with the 8-membered cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane (Ph6B2Si2O4) (3) configuration.


icon graph This Abstract was viewed 246 times | icon graph Article PDF downloaded 105 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Bull, O. S.; Don-Lawson, C.; Nweke-Maraizu, U. Synthesis and Characterization of a Novel Eight-Membered Cyclo-1,3,3,5,7,7-Hexaphenyl-1,5-Dibora-3,7-Disiloxane and 4,4ˈ-Bipyridine, 1D Adduct. Eur. J. Chem. 2024, 15, 232-238.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kishore, P. V. V. N.; Baskar, V. Twelve-membered B2Si4O6 borasiloxane macrocycles. J. Organomet. Chem. 2013, 743, 83-86.
https://doi.org/10.1016/j.jorganchem.2013.06.036

[2]. Brisdon, B. J.; Mahon, M. F.; Molloy, K. C.; Schofield, P. J. Synthesis and structural characterization of cycloborasiloxanes: The X-ray crystal structures of cyclo-1,3,3,5,5-pentaphenyl-1-bora-3,5-disiloxane and cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. J. Organomet. Chem. 1992, 436, 11-22.
https://doi.org/10.1016/0022-328X(92)85022-O

[3]. Olajire, A. A. Recent advances in the synthesis of covalent organic frameworks for CO2 capture. J. CO2 Util. 2017, 17, 137-161.
https://doi.org/10.1016/j.jcou.2016.12.003

[4]. Dhara, A.; Beuerle, F. Reversible assembly of a supramolecular cage linked by boron-nitrogen dative bonds. Chemistry 2015, 21, 17391-17396.
https://doi.org/10.1002/chem.201502841

[5]. Bull, O. S. Solvothermal synthesis and characterization of a new 3D potassium Metal-Organic Framework (MOF) structure. Journal of Chemical Society of Nigeria 2020, 45 (1), 126-134 https://journals.chemsociety.org.ng/index.php/jcsn/article/view/434.

[6]. Bull, O. S.; Bull, I.; Amadi, G. K. Global Warming and technologies for carbon capture and storage. J. Appl. Sci. Environ. Manage. 2020, 24, 1671-1686.
https://doi.org/10.4314/jasem.v24i9.27

[7]. Odu, C. O.; Obunwo, C. C.; Bull, O. S. Solvothermal synthesis and characterization of terephthalic acid-based metal-Organic Frameworks and their catalytic application in biodiesel production. Journal of Chemical Society of Nigeria 2023, 48, 474-483.
https://doi.org/10.46602/jcsn.v48i3.884

[8]. Bull, O. S.; Don-Lawson, C. Facile Heck coupling synthesis and characterization of a novel tris(4-(pyridine-4-vinyl)phenyl)methyl silane tridentate core. Eur. J. Chem. 2024, 15, 71-73.
https://doi.org/10.5155/eurjchem.15.1.71-73.2505

[9]. Bull, O. S.; Bull, I.; Amadi, G. K.; Odu, C. O. Covalent Organic Frameworks (COFS): A Review. J. Appl. Sci. Environ. Manage. 2022, 26, 145-179.
https://doi.org/10.4314/jasem.v26i1.22

[10]. Díaz, U.; Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord. Chem. Rev. 2016, 311, 85-124.
https://doi.org/10.1016/j.ccr.2015.12.010

[11]. Gao, Q.; Li, X.; Ning, G.-H.; Leng, K.; Tian, B.; Liu, C.; Tang, W.; Xu, H.-S.; Loh, K. P. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chem. Commun. (Camb.) 2018, 54, 2349-2352.
https://doi.org/10.1039/C7CC09866A

[12]. Foucher, D. A.; Lough, A. J.; Manners, I. Synthesis, properties, and the ring-ring transformation reactions of cyclic siloxanes incorporating skeletal boron atoms: x-ray crystal structures of the strained boracyclotrisiloxane (PhBO)(Ph2SiO)2 and the boracyclotetra siloxane (PhBO)(Ph2SiO)3. Inorg. Chem. 1992, 31, 3034-3043.
https://doi.org/10.1021/ic00040a010

[13]. O'Dowd, A. T.; Spalding, T. R.; Ferguson, G.; Gallagher, J. F.; Reed, D. Synthesis and crystal structure of the novel borosilicate cage compound [B(OSiPh2OSiPh2O)3B]. J. Chem. Soc. Chem. Commun. 1993, 1816-1817.
https://doi.org/10.1039/c39930001816

[14]. Yoshikawa, M.; Shiba, H.; Kanezashi, M.; Wada, H.; Shimojima, A.; Tsuru, T.; Kuroda, K. Synthesis of a 12-membered cyclic siloxane possessing alkoxysilyl groups as a nanobuilding block and its use for preparation of gas permeable membranes. RSC Adv. 2017, 7, 48683-48691.
https://doi.org/10.1039/C7RA09380B

[15]. Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P.; Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 2008, 130, 11872-11873.
https://doi.org/10.1021/ja805064f

[16]. Pascu, M.; Ruggi, A.; Scopelliti, R.; Severin, K. Synthesis of borasiloxane-based macrocycles by multicomponent condensation reactions in solution or in a ball mill. Chem. Commun. (Camb.) 2013, 49, 45-47.
https://doi.org/10.1039/C2CC37538A

[17]. Liu, W.; Pink, M.; Lee, D. Conjugated polymer sensors built on π-extended borasiloxane cages. J. Am. Chem. Soc. 2009, 131, 8703-8707.
https://doi.org/10.1021/ja902333p

[18]. Gopalakrishnan, M.; Thirumoorthy, K.; Bhuvanesh, N. S. P.; Palanisami, N. Eight membered cyclic-borasiloxanes: synthesis, structural, photophysical, steric strain and DFT calculations. RSC Adv. 2016, 6, 55698-55709.
https://doi.org/10.1039/C6RA02080A

[19]. Torres-Huerta, A.; Velásquez-Hernández, M. de J.; Ramírez-Palma, L. G.; Cortés-Guzmán, F.; Martínez-Otero, D.; Hernández-Balderas, U.; Jancik, V. Synthesis of cyclic and cage borosilicates based on boronic acids and acetoxysilylalkoxides. Experimental and computational studies of the stability difference of six- and eight-membered rings. Inorg. Chem. 2017, 56, 10032-10043.
https://doi.org/10.1021/acs.inorgchem.7b01580

[20]. Torres-Huerta, A.; Velásquez-Hernández, M. de J.; Martínez-Otero, D.; Höpfl, H.; Jancik, V. Structural induction via solvent variation in assemblies of triphenylboroxine and piperazine-potential application as self-assembly molecular sponge. Cryst. Growth Des. 2017, 17, 2438-2452.
https://doi.org/10.1021/acs.cgd.6b01845

[21]. Beckett, M. A.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A.; Owen, P.; Varma, K. S. cyclo-Boratrisiloxane and cyclo-diboratetrasiloxane derivatives and their reactions with amines: crystal and molecular structure of (p-BrC6H4BO)2(Ph2SiO)2. J. Organomet. Chem. 2000, 595, 241-247.
https://doi.org/10.1016/S0022-328X(99)00631-2

[22]. Beckett, M. A.; Strickland, G. C.; Varma, K. S.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A. Amine adducts of triarylboroxines: Synthesis and characterization of adducts of tri(2-tolyl) boroxine and crystal structures of (4-MeC6H4)3B3O3 and (4-MeC6H4) 3B3O3 · 4-picoline. J. Organomet. Chem. 1997, 535, 33-41.
https://doi.org/10.1016/S0022-328X(96)06952-5

[23]. Bull, O. S.; Lickiss, P.; Davies, R. Silicon-Containing Cofs and Mofs for Co2 Capture, Imperial College London: Great Britain, 2018.

[24]. Ferguson, G.; Lawrence, S. E.; Neville, L. A.; O'Leary, B. J.; Spalding, T. R. Synthetic and X-ray diffraction studies of borosiloxane cages [R′Si(ORBO)3SiR′] and the adducts of [ButSiO(PhB)O3SiBut] with pyridine or N,N,N′,N′-tetramethylethylenediamine. Polyhedron 2007, 26, 2482-2492.
https://doi.org/10.1016/j.poly.2006.12.045

[25]. Taira, Z.; Osaki, K. The molecular structure of triethanolamine borate. Inorg. Nucl. Chem. Lett. 1971, 7, 509-512.
https://doi.org/10.1016/0020-1650(71)80240-4

[26]. Rettig, S. J.; Trotter, J. Crystal and molecular structure of B,B- diphenylboroxazolidine (2-aminoethyl diphenylborinate). Can. J. Chem. 1973, 51, 1288-1294.
https://doi.org/10.1139/v73-195

[27]. Ferguson, G.; Lough, A. J.; Sheehan, J. P.; Spalding, T. R. Structure of 2-(diphenylmethylsiloxy)-2-phenyl-1,3,2-oxazaborinane. Acta Crystallogr. C 1991, 47, 379-381.
https://doi.org/10.1107/S0108270190005753

[28]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin Trans. 2 1987, S1-19.
https://doi.org/10.1039/p298700000s1

[29]. Clegg, W.; Scott, A. J.; Souza, F. E. S.; Marder, T. B. 1:1 Adducts of 4-picoline with methylcatecholborane and phenylcatecholborane. Acta Crystallogr. C 1999, 55, 1885-1888.
https://doi.org/10.1107/S0108270199010343

[30]. Sheepwash, E.; Krampl, V.; Scopelliti, R.; Sereda, O.; Neels, A.; Severin, K. Molecular networks based on dative boron-nitrogen bonds. Angew. Chem. Int. Ed Engl. 2011, 50, 3034-3037.
https://doi.org/10.1002/anie.201007225

[31]. Cruz-Huerta, J.; Campillo-Alvarado, G.; Höpfl, H.; Rodríguez-Cuamatzi, P.; Reyes-Márquez, V.; Guerrero-Álvarez, J.; Salazar-Mendoza, D.; Farfán-García, N. Self‐assembly of triphenylboroxine and the phenylboronic ester of pentaerythritol with piperazine, trans‐1,4‐diaminocyclohexane, and 4‐aminopyridine. Eur. J. Inorg. Chem. 2016, 2016, 355-365.
https://doi.org/10.1002/ejic.201501121

[32]. Saha, S.; Kottalanka, R. K.; Panda, T. K.; Harms, K.; Dehnen, S.; Nayek, H. P. Syntheses, characterization and reactivity of Lewis acid-base adducts based on B-N dative bonds. J. Organomet. Chem. 2013, 745-746, 329-334.
https://doi.org/10.1016/j.jorganchem.2013.08.022

[33]. Icli, B.; Solari, E.; Kilbas, B.; Scopelliti, R.; Severin, K. Multicomponent assembly of macrocycles and polymers by coordination of pyridyl ligands to 1,4‐bis(benzodioxaborole)benzene. Chemistry 2012, 18, 14867-14874.
https://doi.org/10.1002/chem.201202313

[34]. Viswanathan, T.; Gopalakrishnan, M.; Thirumoorthy, K.; Prakash, M.; Palanisami, N. Enhancement of second-order nonlinear optical properties of centrosymmetric ferrocenyl borasiloxane by a broken-symmetry approach. J. Phys. Chem. C Nanomater. Interfaces 2021, 125, 8732-8740.
https://doi.org/10.1021/acs.jpcc.0c11242

[35]. Foucher, D. A.; Lough, A. J.; Manners, I. A highly strained heterocyclosiloxane: synthesis and X-ray crystal structure of pentaphenylboracyclotrisiloxane BSi2O3Ph5. J. Organomet. Chem. 1991, 414, C1-C4.
https://doi.org/10.1016/0022-328X(91)83249-4

Supporting Agencies

The Nigerian Government through the Petroleum Technology Development Fund (PTDF), the Tertiary Education Trust Fund (TETFUND), and the Rivers State University, Port Harcourt, Nigeria.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).