European Journal of Chemistry

Synthesis of an eight-membered 2,2,4,6,6,8-hexaphenyl-1,3,5,7,2,6,4,8-tetraoxadisiladiborocane and its reaction with 4,4-azo-pyridine leading to ring contraction to give a dimer and hydrogen bonded macrocyclic siloxane-azo-pyridine

Crossmark


Main Article Content

Okpara Sergeant Bull
Chioma Don-Lawson
Ahamefula Anslem Ahuchaogu

Abstract

We hereby report the syntheses and characterization of a new dimer of azopyridine connected through the six-membered B-N dative-bonded-adduct Ph8B4Si2O6·L (4) and a hydrogen-bond-induced macrocyclic product 4(Ph2Si(OH)2)·3(C10H8N4) (5). The products were obtained after an eight-membered 2,2,4,6,6,8-hexaphenyl-1,3,5,7,2,6,4,8-tetraoxa disiladiborocane (Ph6B2Si2O4) (3), which is abundant in the literature, was successfully synthesized and characterized by standard analytical and spectroscopic methods such as single-crystal XRD, melting point, nuclear magnetic resonance and Fourier transform infrared spectroscopy. Subsequently, compound 3 and 4,4-azopyridine (L) were reacted in a mixture of diethyl ether and petroleum ether solvents at reflux. This reaction caused a contraction of the eight-membered compound 3 to give two products - a dimer compound 4 (Ph8B4Si2O6·L), and a macrocyclic product 4(Ph2Si(OH)2)·3(C10H8N4) (5). These two products have been characterized by single-crystal XRD, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and melting point. Single crystal X-ray diffraction studies reveal that the dimer compound 4 compound crystalized in the monoclinic crystal system with a centrosymmetric space group of P21/c, a = 11.0879(4) Å, b = 14.3707(4) Å, c = 16.2697(5) Å, β = 98.759(3)°, V = 2562.20(13) Å3, Z = 2. On the other hand, the macrocyclic product 4(Ph2Si(OH)2)·3(C10H8N4) (5) is orange blocky needles that crystallized in the triclinic crystal system with a centrosymmetric space group of P-1, a = 12.2352(3) Å, b = 15.3274(6) Å, c = 20.0271(6) Å, α = 89.879(3)°, β = 89.988(2)° γ = 78.298(3)°, V = 3677.7(2) Å3, Z = 2. Furthermore, compounds 4 and 5 exhibit various noncovalent interactions in crystal packing, such as intermolecular and intramolecular π-π as well as hydrogen bonding. This study demonstrates the potential for making novel materials via the combination of cyclodiboradisiloxane (a Lewis acid) and nitrogen-containing ligand (a Lewis base).


icon graph This Abstract was viewed 279 times | icon graph Article PDF downloaded 85 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Bull, O. S.; Don-Lawson, C.; Ahuchaogu, A. A. Synthesis of an Eight-Membered 2,2,4,6,6,8-Hexaphenyl-1,3,5,7,2,6,4,8-Tetraoxadisiladiborocane and Its Reaction With 4,4-Azo-Pyridine Leading to Ring Contraction to Give a Dimer and Hydrogen Bonded Macrocyclic Siloxane-Azo-Pyridine. Eur. J. Chem. 2025, 16, 37-45.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Bull, O. S.; Don-Lawson, C. Facile Heck coupling synthesis and characterization of a novel tris(4-(pyridine-4-vinyl)phenyl) methylsilane tridentate core. Eur. J. Chem. 2024, 15 (1), 71-73.
https://doi.org/10.5155/eurjchem.15.1.71-73.2505

[2]. Bull, O. S.; Don-Lawson, C.; Nweke-Maraizu, U. Synthesis and characterization of a novel eight-membered cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane and 4,4ˈ-bipyridine, 1D adduct. Eur. J. Chem. 2024, 15 (3), 232-238.
https://doi.org/10.5155/eurjchem.15.3.232-238.2545

[3]. Bull, O. S.; Okpa, E. Application of Green Chemistry for the One-pot Preparation of Tris (4-bromophenyl) Chlorosilane. SSRG-IJAC 2023, 10 (2), 1-5.
https://doi.org/10.14445/23939133/IJAC-V10I2P101

[4]. Gopalakrishnan, M.; Viswanathan, T.; David, E.; Thirumoorthy, K.; Bhuvanesh, N. S.; Palanisami, N. Second-order nonlinear optical properties of eight-membered centrosymmetric cyclic borasiloxanes. New J. Chem. 2019, 43 (27), 10948-10958.
https://doi.org/10.1039/C9NJ01611B

[5]. Murali, A. C.; Panda, R.; Kannan, R.; Das, R.; Venkatasubbaiah, K. O,S-Chelated bis(pentafluorophenyl)boron and diphenylboron-β-thioketonates: synthesis, photophysical, electrochemical and NLO properties. Dalton Trans. 2024, 53 (42), 17263-17271.
https://doi.org/10.1039/D4DT02471K

[6]. Le, V.; Kim Lien, V. T.; Pham, V. T.; Tran, Q. T.; Thuy, P. T.; Ha, C. V.; Doanh, V. V.; Ha, L. T.; Hanh, C. H.; Thao, P. N.; Luc, N. Effect of extended π-conjugation on photophysical characteristics of chalcone and cinnamylideneacetophenone. Mater. Sci. Semicond. Process. 2023, 162, 107507.
https://doi.org/10.1016/j.mssp.2023.107507

[7]. Bull, O. S.; Don-Lawson, C. Synthesis and crystal structure determination of a new 1D polymer adduct of 1,2-di(pyridin-4-yl)ethane, based on B-N dative bonded eight-membered cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. Eur. J. Chem. 2024, 15 (4), 325-331.
https://doi.org/10.5155/eurjchem.15.4.325-331.2597

[8]. Ferguson, G.; O'Leary, B. J.; Murphy, D. M.; Spalding, T. R. The synthesis and structure of a new type of borosilicate cage. J. Organomet. Chem. 1996, 526 (1), 195-198.
https://doi.org/10.1016/S0022-328X(96)06468-6

[9]. Bull, O. S.; Bull, I.; Amadi, G. K.; Obaalologhi Odu, C.; Okpa, E. O. A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Orient. J. Chem 2022, 38 (3), 490-516.
https://doi.org/10.13005/ojc/380301

[10]. Fialho, C. B.; Cruz, T. F.; Rodrigues, A. I.; Calhorda, M. J.; Vieira Ferreira, L. F.; Pander, P.; Dias, F. B.; Morgado, J.; Maçanita, A. L.; Gomes, P. T. 9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices. Dalton Trans. 2023, 52 (15), 4933-4953.
https://doi.org/10.1039/D3DT00496A

[11]. Chen, W.; Wu, C. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans. 2018, 47 (7), 2114-2133.
https://doi.org/10.1039/C7DT04116K

[12]. Gon, M.; Tanaka, K.; Chujo, Y. Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. Bull. Chem. Soc. Jpn. 2018, 92 (1), 7-18.
https://doi.org/10.1246/bcsj.20180245

[13]. Mellerup, S. K.; Wang, S. Boron-based stimuli responsive materials. Chem. Soc. Rev. 2019, 48 (13), 3537-3549.
https://doi.org/10.1039/C9CS00153K

[14]. Stanoppi, M.; Lorbach, A. Boron-based donor-spiro-acceptor compounds exhibiting thermally activated delayed fluorescence (TADF). Dalton Trans. 2018, 47 (31), 10394-10398.
https://doi.org/10.1039/C8DT01255E

[15]. Viswanathan, T.; Gopalakrishnan, M.; Thirumoorthy, K.; Prakash, M.; Palanisami, N. Enhancement of Second-Order Nonlinear Optical Properties of Centrosymmetric Ferrocenyl Borasiloxane by a Broken-Symmetry Approach. J. Phys. Chem. C. 2021, 125 (16), 8732-8740.
https://doi.org/10.1021/acs.jpcc.0c11242

[16]. Purushothaman, P.; Mohanapriya, D.; Thenmozhi, K.; Karpagam, S. Designing a ferrocene biphenyl pyridine modified electrode for the non-enzymatic electrochemical detection of catechol. New J. Chem. 2024, 48 (15), 6893-6901.
https://doi.org/10.1039/D4NJ00710G

[17]. Brisdon, B. J.; Mahon, M. F.; Molloy, K. C.; Schofield, P. J. Synthesis and structural characterization of cycloborasiloxanes: The X-ray crystal structures of cyclo-1,3,3,5,5-pentaphenyl-1-bora-3,5-disiloxane and cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. J. Organomet. Chem. 1992, 436 (1), 11-22.
https://doi.org/10.1016/0022-328X(92)85022-O

[18]. Bull, O.; Bull, I.; Amadi, G.; Odu, C. Covalent Organic Frameworks (COFS): A Review. Journal of Applied Sciences and Environmental Management, Jasem 2022, 26 (1), 145-179.
https://doi.org/10.4314/jasem.v26i1.22

[19]. Bull, O.; Bull, I.; Amadi, G. Global Warming and Technologies for Carbon Capture and Storage. Journal of Applied Sciences and Environmental Management, Jasem 2020, 24 (9), 1671-1686.
https://doi.org/10.4314/jasem.v24i9.27

[20]. Gontarczyk, K.; Durka, K.; Klimkowski, P.; Luliński, S.; Serwatowski, J.; Woźniak, K. Synthesis and characterization of di-, tri- and tetraboronic acids based on phenyl- and thienylsilane cores. J. Organomet. Chem. 2015, 783, 1-9.
https://doi.org/10.1016/j.jorganchem.2015.01.024

[21]. Gopalakrishnan, M.; Thirumoorthy, K.; Bhuvanesh, N. S.; Palanisami, N. Eight membered cyclic-borasiloxanes: synthesis, structural, photophysical, steric strain and DFT calculations. RSC. Adv. 2016, 6 (61), 55698-55709.
https://doi.org/10.1039/C6RA02080A

[22]. Ferguson, G.; Lawrence, S. E.; Neville, L. A.; O'Leary, B. J.; Spalding, T. R. Synthetic and X-ray diffraction studies of borosiloxane cages [R′Si(ORBO)3SiR′] and the adducts of [ButSi{O(PhB)O}3SiBut] with pyridine or N,N,N′,N′-tetramethylethylenediamine. Polyhedron 2007, 26 (12), 2482-2492.
https://doi.org/10.1016/j.poly.2006.12.045

[23]. O'Dowd, A. T.; Spalding, T. R.; Ferguson, G.; Gallagher, J. F.; Reed, D. Synthesis and crystal structure of the novel borosilicate cage compound [B(OSiPh2OSiPh2O)3B]. J. Chem. Soc., Chem. Commun. 1993, 1816.
https://doi.org/10.1039/c39930001816

[24]. Taira, Z.; Osaki, K. The molecular structure of triethanolamine borate. Inorg. Nucl. Chem. Lett. 1971, 7 (6), 509-512.
https://doi.org/10.1016/0020-1650(71)80240-4

[25]. Rettig, S. J.; Trotter, J. Crystal and Molecular Structure of B,B- Diphenylboroxazolidine (2-Aminoethyl Diphenylborinate). Can. J. Chem. 1973, 51 (8), 1288-1294.
https://doi.org/10.1139/v73-195

[26]. Ferguson, G.; Lough, A. J.; Sheehan, J. P.; Spalding, T. R. Structure of 2-(diphenylmethylsiloxy)-2-phenyl-1,3,2-oxazaborinane. Acta Crystallogr. C. Cryst. Struct. Commun. 1991, 47 (2), 379-381.
https://doi.org/10.1107/S0108270190005753

[27]. Foucher, D. A.; Lough, A. J.; Manners, I. Synthesis, properties, and the ring-ring transformation reactions of cyclic siloxanes incorporating skeletal boron atoms: x-ray crystal structures of the strained boracyclotrisiloxane (PhBO)(Ph2SiO)2 and the boracyclotetra siloxane (PhBO)(Ph2SiO)3. Inorg. Chem. 1992, 31 (14), 3034-3043.
https://doi.org/10.1021/ic00040a010

[28]. Cruz‐Huerta, J.; Campillo‐Alvarado, G.; Höpfl, H.; Rodríguez‐Cuamatzi, P.; Reyes‐Márquez, V.; Guerrero‐Álvarez, J.; Salazar‐Mendoza, D.; Farfán‐García, N. Self‐Assembly of Triphenylboroxine and the Phenylboronic Ester of Pentaerythritol with Piperazine, trans‐1,4‐Diaminocyclohexane, and 4‐Aminopyridine. Eur J. Inorg Chem 2015, 2016 (3), 355-365.
https://doi.org/10.1002/ejic.201501121

[29]. Foucher, D. A.; Lough, A. J.; Manners, I. Synthesis, properties, and the ring-ring transformation reactions of cyclic siloxanes incorporating skeletal boron atoms: x-ray crystal structures of the strained boracyclotrisiloxane (PhBO)(Ph2SiO)2 and the boracyclotetra siloxane (PhBO)(Ph2SiO)3. Inorg. Chem. 1992, 31 (14), 3034-3043.
https://doi.org/10.1021/ic00040a010

[30]. Sergeant Bull, O.; Monsuru Adewale, S.; Okpa, E. Production of Biodiesel from Waste Cooking Oil using A Zinc-Based Metal-Organic Framework (Zn-MOF) As Catalyst. SSRG International Journal of Applied Chemistry, SSRG-IJAC 2024, 11 (1), 1-6.
https://doi.org/10.14445/23939133/IJAC-V11I1P101

[31]. Bull, O. S.; George, D. M. C. Assessment of Fuel Properties of Biodiesel Obtained From African Pear (Dacryodeseludis) Seeds Oil. Int. J. Adv. Res. Sci. Eng. Technol. 2015, 2 (10), 894-898.

Supporting Agencies

The Nigerian Government through the Petroleum Technology Development Fund (PTDF), the Tertiary Education Trust Fund (TETFUND), and the Rivers State University, Port Harcourt, Nigeria.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).