European Journal of Chemistry

Synthesis, characterization, and antimicrobial activity of Cu(II) and Zn(II) complexes with N,N-bis(4-methoxybenzylidene)ethylenediamine or N-(4-methoxybenzylidene)ethylenediamine Schiff base

Crossmark


Main Article Content

Adrienne Ndiolene
Tidiane Diop
Mouhamadou Sembene Boye
Bruno Faure
Aminata Diasse-Sarr
Michel Giorgi

Abstract

Seven mononuclear complexes were synthesized by mixing N,N'-bis(4-methoxy benzaldehyde)ethylenediamine (L) or N-(4-methoxybenzylidene)ethylenediamine (L1) and copper or zinc salts. These compounds were characterized by IR, 1H NMR, UV-vis, fluorescence spectroscopy, molar conductimetric, and elemental (CHN) analysis techniques. The crystal structures of the zinc complexes were determined by single crystal X-ray diffraction studies. Crystal data for C18H20I2N2O2Zn: Monoclinic, space group P21/c (no. 14), a = 10.45670(10) Å, b = 13.28610(10) Å, c = 15.43490(10) Å, β = 96.4300(10)°, V = 2130.86(3) Å3, Z = 4, Dcalc = 1.919 g/cm3, 46801 reflections measured (8.51° ≤ 2Θ ≤ 145.92°), 4231 unique (Rint = 0.0565, Rsigma = 0.0185) which were used in all calculations. Crystal data for C18H20Br2N2O2Zn: Monoclinic, space group P21/c (no. 14), a = 10.30071(17) Å, b = 13.00839(18) Å, c = 15.0084(2) Å, β = 97.3057(14) °, V = 1994.74(5) Å3, Z = 4, Dcalc = 1.737 g/cm3, 103282 reflections measured (4.158° ≤ 2Θ ≤ 59.492°), 5360 unique (Rint = 0.0394, Rsigma = 0.0161) which were used in all calculations. Crystal structures show a distorted tetrahedral geometry around the zinc metal. The ligand is bidentate chelating with imine nitrogen atoms. Fluorescence spectroscopy shows a reduction in the fluorescence intensity of the complexes relative to the ligand. This reduction is due to the presence of metal-coordinated halides. The in vitro antimicrobial activities of the ligand and complexes were elaborated by screening them against Gram(+) bacteria (Streptococcus pyogenes), Gram(-) bacteria (Pseudomonas aeruginosa), and a fungus (Candida albicans). All compounds showed weak activity against the tested bacterial and fungal strains.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Ndiolene, A.; Diop, T.; Boye, M. S.; Faure, B.; Diasse-Sarr, A.; Giorgi, M. Synthesis, Characterization, and Antimicrobial Activity of Cu(II) and Zn(II) Complexes With N,N-bis(4-methoxybenzylidene)ethylenediamine or N-(4-methoxybenzylidene)ethylenediamine Schiff Base. Eur. J. Chem. 2025, 16, 169-177.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R. A. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity. Inorg. Chim. Acta 2005, 358 (6), 1785-1797.
https://doi.org/10.1016/j.ica.2004.11.026

[2]. Justin Dhanaraj, C.; Sivasankaran Nair, M. Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J. Coord. Chem. 2009, 62 (24), 4018-4028.
https://doi.org/10.1080/00958970903191142

[3]. Badwaik, V.; Deshmukh, R.; Aswar, A. Transition metal complexes of a Schiff base: synthesis, characterization, and antibacterial studies. J. Coord. Chem. 2009, 62 (12), 2037-2047.
https://doi.org/10.1080/00958970902741244

[4]. Keypour, H.; Shayesteh, M.; Rezaeivala, M.; Chalabian, F.; Elerman, Y.; Buyukgungor, O. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde. J. Mol. Struct. 2013, 1032, 62-68.
https://doi.org/10.1016/j.molstruc.2012.07.056

[5]. Bhaskar, R.; Salunkhe, N.; Yaul, A.; Aswar, A. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 151, 621-627.
https://doi.org/10.1016/j.saa.2015.06.121

[6]. Neelakantan, M.; Esakkiammal, M.; Mariappan, S.; Dharmaraja, J.; Jeyakumar, T. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes. Indian J. Pharm. Sci. 2010, 72 (2), 216.
https://doi.org/10.4103/0250-474X.65015

[7]. Rajavel, R.; Vadivu, M. S.; Anitha, C. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes. J. Chem. 2008, 5 (3), 620-626.
https://doi.org/10.1155/2008/583487

[8]. Mishra, A. P.; Khare, M.; Gautam, S. K. Synthesis, physico-chemical characterization, and antibacterial studies of some bioactive Schiff bases and their metal chelates. Synth. React. Inorg. Met.-Org. Chem. 2002, 32 (8), 1485-1500.
https://doi.org/10.1081/SIM-120014864

[9]. Zafar, H.; Ahmad, A.; Khan, A. U.; Khan, T. A. Synthesis, characterization and antimicrobial studies of Schiff base complexes. J. Mol. Struct. 2015, 1097, 129-135.
https://doi.org/10.1016/j.molstruc.2015.04.034

[10]. Saranya, J.; Jone Kirubavathy, S.; Chitra, S.; Zarrouk, A.; Kalpana, K.; Lavanya, K.; Ravikiran, B. Tetradentate Schiff Base Complexes of Transition Metals for Antimicrobial Activity. Arab. J. Sci. Eng. 2020, 45 (6), 4683-4695.
https://doi.org/10.1007/s13369-020-04416-7

[11]. Chew, K.; Tarafder, M.; Crouse, K. A.; Ali, A.; Yamin, B.; Fun, H. Synthesis, characterization and bio-activity of metal complexes of bidentate N-S isomeric Schiff bases derived from S-methyldithiocarbazate (SMDTC) and the X-ray structure of the bis[S-methyl-β-N-(2-furyl-methylketone)dithiocarbazato]cadmium(II) complex. Polyhedron 2004, 23 (8), 1385-1392.
https://doi.org/10.1016/j.poly.2004.02.018

[12]. Pahonțu, E.; Proks, M.; Shova, S.; Lupașcu, G.; Ilieș, D.; Bărbuceanu, S.; Socea, L.; Badea, M.; Păunescu, V.; Istrati, D.; Gulea, A.; Drăgănescu, D.; Pîrvu, C. E. Synthesis, characterization, molecular docking studies and in vitro screening of new metal complexes with Schiff base as antimicrobial and antiproliferative agents. Applied Organomet. Chem. 2019, 33 (11), e5185.
https://doi.org/10.1002/aoc.5185

[13]. Mishra, N.; Poonia, K.; Soni, S. K.; Kumar, D. Synthesis, characterization and antimicrobial activity of Schiff base Ce(III) complexes. Polyhedron 2016, 120, 60-68.
https://doi.org/10.1016/j.poly.2016.05.026

[14]. Pramanik, H. A.; Paul, P. C.; Mondal, P.; Bhattacharjee, C. R. Mixed ligand complexes of cobalt(III) and iron(III) containing N2O2-chelating Schiff base: Synthesis, characterisation, antimicrobial activity, antioxidant and DFT study. J. Mol. Struct. 2015, 1100, 496-505.
https://doi.org/10.1016/j.molstruc.2015.07.076

[15]. Islam, S.; Roy, A. S.; Mondal, P.; Mubarak, M.; Mondal, S.; Hossain, D.; Banerjee, S.; Santra, S. Synthesis, catalytic oxidation and antimicrobial activity of copper(II) Schiff base complex. J. Mol. Catal. A: Chem. 2011, 336 (1-2), 106-114.
https://doi.org/10.1016/j.molcata.2011.01.006

[16]. Shebl, M.; Khalil, S. M.; Ahmed, S. A.; Medien, H. A. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand. J. Mol. Struct. 2010, 980 (1-3), 39-50.
https://doi.org/10.1016/j.molstruc.2010.06.034

[17]. Prakash, A.; Singh, B. K.; Bhojak, N.; Adhikari, D. Synthesis and characterization of bioactive zinc(II) and cadmium(II) complexes with new Schiff bases derived from 4-nitrobenzaldehyde and acetophenone with ethylenediamine. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 76 (3-4), 356-362.
https://doi.org/10.1016/j.saa.2010.03.019

[18]. Marchetti, F.; Pettinari, C.; Pettinari, R.; Cingolani, A.; Leonesi, D.; Lorenzotti, A. Group 12 metal complexes of tetradentate N2O2-Schiff-base ligands incorporating pyrazole. Polyhedron 1999, 18 (23), 3041-3050.
https://doi.org/10.1016/S0277-5387(99)00230-2

[19]. Sheldrick, G. M. SHELXT- Integrated space-group and crystal-structure determination. Acta Crystallogr. A. Found Adv. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053273314026370

[20]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[21]. Ndiolene, A.; Diop, T.; Sembene Boye, M.; Maris, T.; Diasse-Sarr, A. Synthesis, Spectroscopic Studies and Crystal Structures of N, N'-bis (4-methoxybenzylidene) Ethylenediamine and an Its New Cadmium (II) Complex. AJHC. 2020, 6 (2), 30.
https://doi.org/10.11648/j.ajhc.20200602.13

[22]. Yu, T.; Su, W.; Li, W.; Hong, Z.; Hua, R.; Li, M.; Chu, B.; Li, B.; Zhang, Z.; Hu, Z. Z. Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorganica Chim. Acta 2006, 359, 2246-2251.
https://doi.org/10.1016/j.ica.2006.01.019

[23]. Olleik, H.; Yacoub, T.; Hoffer, L.; Gnansounou, S. M.; Benhaiem-Henry, K.; Nicoletti, C.; Mekhalfi, M.; Pique, V.; Perrier, J.; Hijazi, A.; Baydoun, E.; Raymond, J.; Piccerelle, P.; Maresca, M.; Robin, M. Synthesis and Evaluation of the Antibacterial Activities of 13-Substituted Berberine Derivatives. Antibiotics 2020, 9 (7), 381.
https://doi.org/10.3390/antibiotics9070381

[24]. Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019, 165, 133-141.
https://doi.org/10.1016/j.ejmech.2019.01.022

[25]. Selmeczi, K.; Giorgi, M.; Speier, G.; Farkas, E.; Réglier, M. Mono‐ versus Binuclear Copper(II) Complexes in Phosphodiester Hydrolysis. Eur. J. Inorg. Chem. 2006, 2006 (5), 1022-1031.
https://doi.org/10.1002/ejic.200500595

[26]. Arslan, T.; Öğretir, C.; Tsiouri, M.; Plakatouras, J. C.; Hadjiliadis, N. Interactions of trivalent lanthanide cations with a hexadentate Schiff base derived from the condensation of ethylenediamine with 8-hydroxyquinoline-2-carboxaldehyde. J. Coord. Chem. 2007, 60 (6), 699-710.
https://doi.org/10.1080/00958970600884148

[27]. Yu, Y.; Xian, H.; Liu, J.; Zhao, G. Synthesis, Characterization, Crystal Structure and Antibacterial Activities of Transition Metal(II) Complexes of the Schiff Base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules 2009, 14 (5), 1747-1754.
https://doi.org/10.3390/molecules14051747

[28]. Ali, O. A.; El-Medani, S. M.; Ahmed, D. A.; Nassar, D. A. Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2,6-diaminopyridine. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 144, 99-106.
https://doi.org/10.1016/j.saa.2015.02.078

[29]. Taha, Z. A.; Ajlouni, A. M.; Al Momani, W.; Al-Ghzawi, A. A. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2011, 81 (1), 570-577.
https://doi.org/10.1016/j.saa.2011.06.052

[30]. Mohamed, G. G.; Sharaby, C. M. Metal complexes of Schiff base derived from sulphametrole and o-vanilin. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2007, 66 (4-5), 949-958.
https://doi.org/10.1016/j.saa.2006.04.033

[31]. Raman, N.; Dhaveethu Raja, J.; Sakthivel, A. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J. Chem. Sci. 2007, 119 (4), 303-310.
https://doi.org/10.1007/s12039-007-0041-5

[32]. Munde, A.; Jagdale, A.; Jadhav, S.; Chondhekar, T. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand. J. Serb. Chem. Soc. 2010, 75 (3), 349-359.
https://doi.org/10.2298/JSC1000009M

[33]. El-Shafiy, H. F. Synthesis, spectral, photoluminescence, DFT studies and bioassay of new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl) quinolin-2(1H)-one. J. Mol. Struct. 2018, 1166, 348-361.
https://doi.org/10.1016/j.molstruc.2018.04.023

[34]. Nair, M. S.; Joseyphus, R. S. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and dl-α-aminobutyric acid. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2008, 70 (4), 749-753.
https://doi.org/10.1016/j.saa.2007.09.006

[35]. Neelakantan, M.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2008, 71 (4), 1599-1609.
https://doi.org/10.1016/j.saa.2008.06.008

[36]. Abdel-Rahman, L. H.; El-Khatib, R. M.; Nassr, L. A.; Abu-Dief, A. M. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes. J. Mol. Struct. 2013, 1040, 9-18.
https://doi.org/10.1016/j.molstruc.2013.02.023

[37]. Abu Al-Nasr, A. K.; Ramadan, R. M. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2013, 105, 14-19.
https://doi.org/10.1016/j.saa.2012.12.008

[38]. Zishen, W.; Zhiping, L.; Zhenhuan, Y. Synthesis, characterization and antifungal activity of glycylglycine Schiff base complexes of 3d transition metal ions. Transition Met. Chem. 1993, 18 (3), 291-294 https://doi.org/10.1007/BF00207949
https://doi.org/10.1007/BF00207949

[39]. Abou-Hussen, A. A.; Linert, W. Chromotropism Behavior and Biological Activity of some Schiff Base-Mixed Ligand Transition Metal Complexes. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2009, 39 (9), 570-599.
https://doi.org/10.1080/15533170903327950

[40]. Sakthilatha, D.; Rajavel, R. Synthesis, characterization and biological studies of homobimetallic Schiff base cu(II) and Ni(II) complexes. Chem. Sci. Trans. 2013, 2(3), 711-726 http://www.e-journals.in/pdf/V2N3/711-726.pdf

[41]. El-Shafiy, H. F. Synthesis, spectral, photoluminescence, DFT studies and bioassay of new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl) quinolin-2(1H)-one. J. Mol. Struct. 2018, 1166, 348-361.
https://doi.org/10.1016/j.molstruc.2018.04.023

[42]. Shakdofa, M. E. M.; Al-Hakimi, A. N.; A. Elsaied, F.; Alasbahi, S. O. M.; Alkwlini, A. M. A. Synthesis, characterization and bioactivity Zn2+, Cu2+, Ni2+, Co2+, Mn2+, Fe3+, Ru3+, VO2+ and UO22+ complexes of 2-hydroxy-5-((4-nitrophenyl)diazenyl)benzylidene)-2-(p-tolyl- amino)acetohydrazide. Bull. Chem. Soc. Eth. 2017, 31 (1), 75-91.
https://doi.org/10.4314/bcse.v31i1.7

[43]. Forouzandeh, F.; Keypour, H.; Zebarjadian, M. H.; Mahmoudabadi, M.; Hosseinzadeh, L.; Karamian, R.; Ahmadi Khoei, M.; Gable, R. W. Synthesis, characterization and X-ray crystal structure of potentially N6O2 coordinating macroacyclic Schiff base ligands and their Mn(II), Zn(II) and Cd(II) complexes; cytotoxic, antibacterial properties and competitive 7Li NMR studies. Polyhedron 2019, 160, 238-246.
https://doi.org/10.1016/j.poly.2018.12.052

[44]. Hung, W.; Lin, C. Preparation, Characterization, and Catalytic Studies of Magnesium Complexes Supported by NNO-Tridentate Schiff-Base Ligands. Inorg. Chem. 2009, 48 (2), 728-734.
https://doi.org/10.1021/ic801397t

[45]. Sohtun, W. P.; Khamrang, T.; Kannan, A.; Balakrishnan, G.; Saravanan, D.; Akhbarsha, M. A.; Velusamy, M.; Palaniandavar, M. Iron(III) bis‐complexes of Schiff bases of S‐methyldithiocarbazates: Synthesis, structure, spectral and redox properties and cytotoxicity. Applied Organomet. Chem. 2020, 34 (5), e5593.
https://doi.org/10.1002/aoc.5593

[46]. Esmaielzadeh, S.; Zarenezhad, E. Copper(II) Schiff Base Complexes with Catalyst Property: Experimental, Theoretical, Thermodynamic and Biological Studies. ACSi 2018, 416-428
https://doi.org/10.17344/acsi.2018.4159

[47]. Das, K.; Datta, A.; Sinha, C.; Huang, J.; Garribba, E.; Hsiao, C.; Hsu, C. End‐to‐End Thiocyanato‐Bridged Helical Chain Polymer and Dichlorido‐Bridged Copper(II) Complexes with a Hydrazone Ligand: Synthesis, Characterisation by Electron Paramagnetic Resonance and Variable‐Temperature Magnetic Studies, and Inhibitory Effects on Human Colorectal Carcinoma Cells. ChemistryOpen 2012, 1 (2), 80-89.
https://doi.org/10.1002/open.201100011

[48]. Ndiolene, A.; Diop, T.; Ndiaye, N.; Boye, M. S.; Michaud, F.; Diasse-Sarr, A. Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes. Z. fur Naturforsch. B 2022, 77 (2-3), 165-169.
https://doi.org/10.1515/znb-2021-0181

[49]. Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans, 2007, 955-964.
https://doi.org/10.1039/B617136B

[50]. Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 2015, 90, 47-57.
https://doi.org/10.1016/j.poly.2015.01.035

[51]. Chowdhury, T.; Dasgupta, S.; Khatua, S.; Acharya, K.; Das, D. Executing a Series of Zinc(II) Complexes of Homologous Schiff Base Ligands for a Comparative Analysis on Hydrolytic, Antioxidant, and Antibacterial Activities. ACS. Appl. Bio Mater. 2020, 3 (7), 4348-4357.
https://doi.org/10.1021/acsabm.0c00372

[52]. Khalaji, A. D.; Weil, M.; Grivani, G.; Akerdi, S. J. Synthesis, characterization, and crystal structure of two zinc(II) halide complexes with the symmetrical bidentate Schiff-base ligand (3,4-MeO-ba)2en. Monatsh. Chem. 2010, 141 (5), 539-543.
https://doi.org/10.1007/s00706-010-0296-2

[53]. Shebl, M. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 117, 127-137.
https://doi.org/10.1016/j.saa.2013.07.107

[54]. Majumder, A.; Rosair, G. M.; Mallick, A.; Chattopadhyay, N.; Mitra, S. Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N,N,O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine. Polyhedron 2006, 25 (8), 1753-1762.
https://doi.org/10.1016/j.poly.2005.11.029

[55]. Kumar, S., Niranjan, M, S.; Chaluvaraju, K, C.; Jamakhandi, C, M and Dayanand Kadadevar. Synthesis and antimicrobial study of some Schiff bases of sulfonamides. Journal of Current Pharmaceutical Research, 2010, 01, 39-42.

[56]. Matar, S. A.; Talib, W. H.; Mustafa, M. S.; Mubarak, M. S.; AlDamen, M. A. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine. Arab. J. Chem. 2015, 8 (6), 850-857.
https://doi.org/10.1016/j.arabjc.2012.12.039

[57]. Yamgar, R. S.; Nivid, Y.; Nalawade, S.; Mandewale, M.; Atram, R. G.; Sawant, S. S. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies. Bioinorg. Chem. Appl. 2014, 2014, 1-10.
https://doi.org/10.1155/2014/276598

[58]. Gull, P.; Ikbal Ahmad Talukdar, M.; Ahmad Dar, O.; Ahmad Malik, M.; Adil Hashmi, A. Synthesis, Spectroscopic Characterization, Coordination, and Antimicrobial Activity of Some Metal Complexes Derived From 1, 2-Diphenylethane-1, 2-dione and Dinitrophenyl Hydrazine Schiff Base Ligand. Jundishapur J. Nat. Pharm. Prod. 2018, 13(1), e67179. https://doi.org/10.5812/jjnpp.67179

[59]. Sani, M.; Nuraddeen, A. Synthesis, characterization and antibacterial studies of tetradentate schiff base and their metal (II) complexes derived from 4-(Benzeneazo salicylaldehyde and ethylenediamine). Bayero J. Pure Appl. Sci. 2019, 11, 176.
https://doi.org/10.4314/bajopas.v11i2.22

Supporting Agencies

Aix Marseille Université, Marseille, Cedex 20, France
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).