European Journal of Chemistry

Spectroscopic and DFT study of a glutamic acid Nd(III) complex

Crossmark


Main Article Content

Issei Takahashi
Daisuke Nakane
Takashiro Akitsu
Chittaranjan Sinha

Abstract

Due to the large number of electrons occupying 4f orbitals, the computational chemistry of lanthanide complexes is not as easy as that of d-block ones. As a result, even though lanthanide molecules have attracted attention in various fields in recent years, there has been little research on their spectrochemical properties or computational science in detail. In this study, we experimentally measured electronic, circular dichroism (CD), fluorescence, and infrared (IR) spectra as well as the direct current (DC) magnetic susceptibility curves (magnetization (M) versus magnetic field (H) curves (MH) and magnetization (M) versus temperature (T) curves (MT)) of a mononuclear Nd(III) complex with a glutamic acid ligand and to test the density functional theory (DFT) calculation conditions that can be performed from the structure optimization. Bands of C=O and N-H were observed in the IR spectrum, and paramagnetism was confirmed by measurements. The fluorescence intensity of the DMSO solution at 300 K was very weak. Ultraviolet-visible (UV-vis) and CD spectra showed a strong intraligand transition at 200-250 nm and relatively strong sharp f-f transitions at 581, 742, and 801 nm (like the solvated Nd(III) ion). Thus, herein we synthesized lanthanide Nd(III) complexes coordinated with amino acids and conducted structure estimation research by comparing experimental measurement results such as electron microscopy, spectroscopy, and magnetism with DFT calculations (optimized structure). Lanthanide complexes are difficult to study because their coordination numbers are large, their solution structures are unclear, and their large number of electrons makes computational chemistry difficult. In general, metals have large ionic radii, and thus can potentially have high coordination numbers. Metal ions of hard Lewis acids prefer hard-base ligands (especially oxygen atoms in water and amino acids). Therefore, it is interesting to try to easily understand the structure in solution by comparing spectroscopic experiments with computational chemistry.


icon graph This Abstract was viewed 17 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Takahashi, I.; Nakane, D.; Akitsu, T.; Sinha, C. Spectroscopic and DFT Study of a Glutamic Acid Nd(III) Complex. Eur. J. Chem. 2025, 16, 97-103.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Cotton, S. Lanthanide and Actinide Chemistry; Wiley-Blackwell: Hoboken, NJ, 2006.
https://doi.org/10.1002/0470010088

[2]. Wybourne, B. G.; Smentek, L. Optical spectroscopy of lanthanides: Magnetic and hyperfine interactions; CRC Press: London, England, 2019.

[3]. Akitsu, T. Lanthanide Complexes in Recent Molecules. Molecules 2022, 27 (18), 6019.
https://doi.org/10.3390/molecules27186019

[4]. Matsumoto, K. Chemistry of Lanthanide. Asakura Shoten Publisher: Tokyo, Japan, 2008.

[5]. Kawahara, K.; Okumura, Y.; Takiguchi, Y.; Nakane, D.; Akitsu, T. Lightening calculations for Schiff base lanthanide complexes. AIP Conf. Proc. 2024, 3030, 020006.
https://doi.org/10.1063/5.0192856

[6]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009.

[7]. Hatanaka, M. Theoretical Study of Lanthanide Luminescence Materials. Mol. Sci. 2021, 15 (1), A0118.
https://doi.org/10.3175/molsci.15.A0118

[8]. Shinoda, S.; Tsukube, H. Development of Analytical and Separation Systems Using Ternary Complexation Characteristics of Tris(β-diketonato)lanthanides. Bunseki Kagaku 2012, 61 (3), 169-176.
https://doi.org/10.2116/bunsekikagaku.61.169

[9]. Arnesano, F.; Banci, L.; Piccioli, M. NMR structures of paramagnetic metalloproteins. Quart. Rev. Biophys. 2005, 38 (2), 167-219.
https://doi.org/10.1017/S0033583506004161

[10]. Acharya, J.; Kalita, P.; Chandrasekhar, V. High-Coordinate Mononuclear Ln(III) Complexes: Synthetic Strategies and Magnetic Properties. Magnetochemistry 2020, 7 (1), 1.
https://doi.org/10.3390/magnetochemistry7010001

[11]. Roddick-Lanzilotta, A. D.; McQuillan, A. An in situ Infrared Spectroscopic Study of Glutamic Acid and of Aspartic Acid Adsorbed on TiO2: Implications for the Biocompatibility of Titanium. J. Colloid Interface Sci. 2000, 227 (1), 48-54.
https://doi.org/10.1006/jcis.2000.6864

[12]. Nawrocki, P. R.; Sørensen, T. J. Optical spectroscopy as a tool for studying the solution chemistry of neodymium(III). Phys. Chem. Chem. Phys. 2023, 25 (29), 19300-19336.
https://doi.org/10.1039/D3CP02033A

[13]. Rajabi, A.; Grotjahn, R.; Rappoport, D.; Furche, F. A DFT perspective on organometallic lanthanide chemistry. Dalton Trans. 2024, 53 (2), 410-417.
https://doi.org/10.1039/D3DT03221C

[14]. Janowski, A.; Wałkuska, I.; Lewandowski, W. Infrared spectra of lanthanide complexes with eriochrome cyanine r. Anal. Chim. Acta 1982, 144, 289-294.
https://doi.org/10.1016/S0003-2670(01)95547-3

[15]. Hawkins, C. J.; Lawson, P. J. Circular dichroism spectra of amino acid complexes. Carboxylatopentaamminecobalt(III) compounds. Inorg. Chem. 1970, 9 (1), 6-11.
https://doi.org/10.1021/ic50083a002

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).