European Journal of Chemistry

New green HPLC and TLC methods for the determination of dapagliflozin, metformin hydrochloride, and its two official impurities, melamine and cyanoguanidine, in their quaternary mixture

Crossmark


Main Article Content

Nashwa Ahmed Ibrahim
Eglal Abdelhamid Abd El Aleem
Walaa Gamal Abuelazem
Nessreen Salah Abdelhamid

Abstract

Two environmentally friendly, simple, and accurate chromatographic methods were developed for the quantitative measurement of quaternary mixtures of dapagliflozin, metformin hydrochloride, melamine, and cyanoguanidine in both pure forms and pharmaceutical formulations. Recently, the development of new analytical methods requires taking into account green aspects. The principal objectives of green chemistry are the reduction and elimination of hazardous substances and their harmful effects on the environment and human health. The green HPLC method uses the C18 column (250 × 4.6 mm × 5 μm particle size) and a mobile phase consisting of methanol: water in a ratio of (90:10, by volume) with pH adjusted to 3.5 using o-phosphoric acid. The flow rate was 1.2 mL/min detected at 225 nm. Retention time (Rt) values were found to be 5.75, 2.06, 2.49 and 3.01 min for dapagliflozin, metformin hydrochloride, melamine, and cyanoguanidine, respectively, while the proposed green TLC method uses a silica gel plate 60F254 and ethanol: ethyl acetate (1:9, by volume) as a developing system detected at 225 nm. The Rf values were found to be 0.66, 0.74, 0.51 and 0.83 for the four components, respectively. Good linearity was shown through concentration ranges of 1-30, 2-70, 0.5-25, and 1-25 μg/mL for the four components, respectively, for the proposed HPLC method and 0.1-1.5, 0.2-3.0, 0.1-1.5 and 0.1-1.2 μg/band for the four components, respectively, for the proposed TLC method. The proposed methods were successfully applied to diaflozimet 10/1000® tablets containing dapagliflozin and metformin hydrochloride and the results were statistically compared to a published HPLC method and no significant differences were found.


icon graph This Abstract was viewed 137 times | icon graph Article PDF downloaded 33 times

How to Cite
(1)
Ibrahim, N. A.; Abd El Aleem, E. A.; Abuelazem, W. G.; Abdelhamid, N. S. New Green HPLC and TLC Methods for the Determination of Dapagliflozin, Metformin Hydrochloride, and Its Two Official Impurities, Melamine and Cyanoguanidine, in Their Quaternary Mixture. Eur. J. Chem. 2025, 16, 302-310.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Drug bank, Dapagliflozin, from https://go.drugbank.com/drugs/ DB06292 (accessed Jan 10, 2025).

[2]. PubChem. Dapagliflozin from https://pubchem.ncbi.nlm.nih.gov/ compound/Dapagliflozin (accessed Jan 10, 2025).

[3]. Manasa, S.; K., D.; G, N. R.; S., S. Method development and validation of dapagliflozin in api by RP-HPLC and UV-spectroscopy. Int. J. Pharm. Sci. Drug. Res. 2014, 250-252.
https://doi.org/10.25004/IJPSDR.2014.060317

[4]. Chao, E. C.; Henry, R. R. SGLT2 inhibition - a novel strategy for diabetes treatment. Nat. Rev. Drug. Discov. 2010, 9 (7), 551-559.
https://doi.org/10.1038/nrd3180

[5]. British Pharmacopoeia 2013 [Print +CD-ROM]; Stationery Office Books (TSO), 2012.

[6]. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th ed.; Maryadele J. O'Neil, Budavari, S., Eds.; John Wiley & Sons: Nashville, TN, 2025.

[7]. Harvey, R. A.; Clark, M. A.; Finkel, R.; Rey, J. A.; Whalen, K. Pharmacology, 5th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, 2011.

[8]. Chik, Z.; Haron, D. M.; Ahmad, E.; Taha, H.; Mustafa, A. Analysis of melamine migration from melamine food contact articles. Food. Additives & Contaminants: Part A 2011, 28 (7), 967-973.
https://doi.org/10.1080/19440049.2011.576401

[9]. Kłaczkow, G.; Anuszewska, E. L. Determination of Impurities in Medical Products Containing Metformin Hydrochloride. Acta Pol. Pharm. 2010, 67 (6), 593-598.

[10]. Matsushima, Y., Onodera, H., Ogasawara, H., Kitaura, K., Mitsumori, K., Maekawa, A., Takahashi, M., Eisei Shikenjo Hokoku 1991, 109, 61-66.

[11]. Sanagapati, M.; Dhanalakshmi, K.; Nagarjunareddy, G.; Sreenivasa, S. Development and validation of a RP-HPLC method for the estimation of dapagliflozin in api. International Journal of Pharmaceutical Sciences and Research; Society of Pharmaceutical Sciences and Research, 2014; 5. http://dx.doi.org/10.13040/IJPSR.0975-8232.5(12).5394-97
https://doi.org/10.13040/IJPSR.0975-8232.5(12).5394-97

[12]. Sarkar, S.; Patel, V. P., Method development and validation of dapagliflozin drug in bulk and tablet dosage form by RP-HPLC. Int. J. Pharm. Res. Health Sci. 2017, 5 (4), 1755-1759. https://www.pharmahealthsciences.net/pdfs/volume5-issue42017/7.vol5-issue4-2017-MS-15448.pdf

[13]. Jeyabaskaran, M.; Rambabu, C.; Dhanalakshmi, B. RP-HPLC Method Development and Validation of Dapagliflozin in Bulk and Tablet formulation. Int. J. Pharm. Anal. Res. 2013, 2, 221-226. https://ijpar.com/ijpar/article/view/608

[14]. Chaudhari, U.; Sahu, J. K.; Dande, P. R. Analytical Method Development, Validation and Forced Degradation Study of Dapagliflozin by RP-HPLC. Drug Metab. Bioanal. Lett. 2023, 16 (2), 140-152.
https://doi.org/10.2174/2949681016666230823091112

[15]. Verma, M. V.; Patel, C. J.; Patel, M. M. Development and stability indicating HPLC method for dapagliflozin in api and pharmaceutical dosage form. Int. J. App. Pharm. 2017, 9 (5), 33.
https://doi.org/10.22159/ijap.2017v9i5.19185

[16]. Mante, G. V.; Gupta, K. R.; Hemke, A. T. Estimation of Dapagliflozin from its Tablet Formulation by UV-Spectrophotometry. Pharm. Methods PHME. 2017, 8 (2), 102-107.
https://doi.org/10.5530/phm.2017.8.16

[17]. Sanagapati, M.; Dhanalakshmi, K.; Nagarjuna, R. G.; Kavitha, B. Method development and validation of dapagliflozin API by UV spectroscopy. Int. J. Pharm. Sci. Rev. Res. 2014, 27 (1), 270-272. https://globalresearchonline.net/journalcontents/v27-1/48.pdf (accessed Jan 10, 2025).

[18]. Arayne, M. S.; Sultana, N.; Zuberi, M. H. Development and Validation of RP-HPLC Method for the Analysis of Metformin. Pak. J. Pharm. Sci. 2006, 19 (3), 231-235.

[19]. Umapathi, P.; Ayyappan, J.; Quine, S. Quantitative Determination of Metformin Hydrochloride in Tablet Formulation Containing Croscarmellose Sodium as Disintegrant by HPLC and UV Spectrophotometry. Trop. J. Pharm. Res. 2012, 11 (1), https://doi.org/10.4314/tjpr.v11i1.14.
https://doi.org/10.4314/tjpr.v11i1.14

[20]. Havele, S.; Dhaneshwar, S. Estimation of Metformin in Bulk Drug and in Formulation by HPTLC. J. Nanomedic. Nanotechnol. 2010, 01 (01), https://doi.org/10.4172/2157-7439.1000102.
https://doi.org/10.4172/2157-7439.1000102

[21]. Mubeen, G.; Noor, K. Spectrophotometric method for analysis of metformin hydrochloride. Indian. J. Pharm. Sci. 2009, 71 (1), 100.
https://doi.org/10.4103/0250-474X.51947

[22]. Dange, Y. D.; Honmane, S. M.; Bhinge, S. D.; Salunkhe, V. R.; Jadge, D. R. Development and Validation of UV-Spectrophotometric Method for Estimation of Metformin in Bulk and Tablet Dosage Form. Indian J. Pharm. Educ. Res. IJPER. 2017, 51 (4s), s754-s760.
https://doi.org/10.5530/ijper.51.4s.109

[23]. Ali, M. S.; Rafiuddin, S.; Ghori, M.; Khatri, A. R. Simultaneous Determination of Metformin Hydrochloride, Cyanoguanidine and Melamine in Tablets by Mixed-Mode HILIC. Chroma. 2008, 67 (7-8), 517-525.
https://doi.org/10.1365/s10337-008-0542-5

[24]. Zhou, Y.; Wang, F.; Wang, Z.; Zhan, H.; Liu, W.; Meng, Z. Determination of metformin hydrochloride, melamine and dicyandiamide in metformin hydrochloride preparations by tandem dual solid phase extraction cartridges-high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry. Chinese Journal of Chromatography 2018, 36 (2), 159.
https://doi.org/10.3724/SP.J.1123.2017.10014

[25]. Pawar, A. K.; Babu, V. A.; Harini, U.; Sree, S. D. An improved validated RP-HPLC method for the simultaneous Estimation of metformin and dapagliflozin. Int. J. Chem. Pharm. Anal. 2020, 7 (2), 1-11. https://www.ijcpa.in/articles/an-improved-validated-rphplc-method-for-the-simultaneous-estimation-of-metformin-and-dapagliflozin.pdf

[26]. Urooj, A. Development and validation of RP-HPLC method for simultaneous estimation of dapagliflozin and metformin in bulk and in synthetic mixture. World J. Pharm. Pharm. Sci. WJPPS. 2017, 2139-2150.
https://doi.org/10.20959/wjpps20177-9657

[27]. Hadi, S. A.; Kumar, P. B. R. Simultaneous estimation of metformin and dapagliflozin tablets by RP-HPLC. World J. Pharm. Pharm. Sci. 2017, 6 (11), 1188-1199. https://www.wjpps.com/Wjpps_controller/ abstract_id/8112

[28]. Dighe, N. S.; Varade, P. R.; Shinde, G. S.; Rao, P. S. Quantitative Estimation and Validation of Dapagliflozin and Metformin Hydrochloride in Pharmaceutical Dosage form by RP-HPLC. Asia. Jour. Rese. Chem. 2019, 12 (3), 136.
https://doi.org/10.5958/0974-4150.2019.00028.2

[29]. Harde, M.; Lakade, S.; Gite, V.; Chopade, V.; Khomne, A. Ultraviolet-spectrophotometric method for simultaneous estimation of dapagliflozin propanediol and metformin hydrochloride. Int. Res. J. Pharm. 2019, 10 (4), 90-94.
https://doi.org/10.7897/2230-8407.1004130

[30]. Jani, B.; Shah, K.; Kapupara, P. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J. Bioequivalence Stud. 2015, 1 (1), 102. https://dx.doi.org/ 10.15744/2575-551X.1.102

[31]. Q2 (R1) Validation of Analytical Procedures, Proceedings of the International Conferences on Harmonization. ICH 2005.

[32]. USP. United States Pharmacopeia; United States Pharmacopeia: Rockville, MD, 2006.

[33]. High-Performance Thin-Layer Chromatography (HPTLC), 2011th ed.; Srivastava, M., Ed.; Springer: Berlin, Germany, 2010.

[34]. Gałuszka, A.; Migaszewski, Z. M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC. Trends in Analytica. Chemistry 2012, 37, 61-72.
https://doi.org/10.1016/j.trac.2012.03.013

[35]. Saleh, S. S.; Lotfy, H. M.; Tiris, G.; Erk, N.; Rostom, Y. Analytical tools for greenness assessment of chromatographic approaches: Application to pharmaceutical combinations of Indapamide, Perindopril and Amlodipine. Microchemical Journal 2020, 159, 105557.
https://doi.org/10.1016/j.microc.2020.105557

Supporting Agencies

Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St,62511, Beni-Suef, Egypt
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).