European Journal of Chemistry

Synthesis and crystal structure of [HexNH3]2[HC2O4]2·H2O: A novel hydrogen oxalate hydrate organic salt showing antimicrobial activity against Streptomyces

Crossmark


Main Article Content

Mamadou Ba
Waly Diallo
Alhousseynou Sarr
Bocar Traore
Daouda Ndoye
Nalla Mbaye
Mamadou Sidibe
Laurent Plasseraud
Helene Cattey

Abstract

The new monohydrated n-hexylammonium hydrogen oxalate salt [HexNH3]2[HC2O4]2·H2O (1) (HexNH3 = C6H16N+) has been prepared at room temperature, by mixing dehydrated oxalic acid with n-hexylamine. Salt 1 isolated as single-crystals, crystallizes in the orthorhombic system (space group Pna21) with cell constants of a = 14.1534(8) Å, b = 5.6656(3) Å, c = 26.8153(16) Å, V = 2150.3(2) Å3 and Z = 4. Two n-hexylammonium cations, two hydrogen oxalate anions, and one water molecule compose the asymmetric unit. All components of salt 1 are linked through N-H···O and O-H···O hydrogen bonding interactions leading to an extended supramolecular self-assembly. Structural characterization of 1 was completed by infrared and UV-visible spectroscopy. Elemental analysis (C, H, and N) also corroborates the X-ray crystal structure. The antibacterial activity of salt 1 against a bacterial species of the genus Streptomyces, extracted from potatoes, was then investigated. The antibiotic susceptibility test revealed that the bacteria were highly sensitive to salt, from a concentration of 6 mg/mL, thus acting as an effective bactericide.


icon graph This Abstract was viewed 102 times | icon graph Article PDF downloaded 13 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ba, M.; Diallo, W.; Sarr, A.; Traore, B.; Ndoye, D.; Mbaye, N.; Sidibe, M.; Plasseraud, L.; Cattey, H. Synthesis and Crystal Structure of [HexNH3]2[HC2O4]2·H2O: A Novel Hydrogen Oxalate Hydrate Organic Salt Showing Antimicrobial Activity Against Streptomyces. Eur. J. Chem. 2025, 16, 251-258.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Braga, D. Crystal engineering, Where from? Where to?. Chem. Commun. 2003, 2751.
https://doi.org/10.1039/b306269b

[2]. Nangia, A. K.; Desiraju, G. R. Crystal Engineering: An Outlook for the Future. Angew. Chem. Int. Ed. 2019, 58 (13), 4100-4107.
https://doi.org/10.1002/anie.201811313

[3]. Braga, D. Crystal engineering: from promise to delivery. Chem. Commun. 2023, 59 (95), 14052-14062.
https://doi.org/10.1039/D3CC04313D

[4]. Mo, L.; Jin, S.; Zhang, W.; Guo, J.; Liu, H.; Wang, D. The crystal structures of ten supramolecular adducts of benzylamine and organic acids. J. Mol. Struc. 2020, 1205, 127538.
https://doi.org/10.1016/j.molstruc.2019.127538

[5]. Yang, X.; Zhu, Y.; Chen, X.; Gao, X.; Jin, S.; Liu, B.; He, L.; Chen, B.; Wang, D. Molecular structures of ten ionic hydrogen bond-mediated anhydrous tert-butylammonium salts from different carboxylic acids. J. Mol. Struc. 2022, 1251, 131917.
https://doi.org/10.1016/j.molstruc.2021.131917

[6]. Ballabh, A.; Trivedi, D. R.; Dastidar, P.; Suresh, E. Hydrogen bonded supramolecular network in organic salts: crystal structures of acid-base salts of dicarboxylic acids and amines. CrystEngComm. 2002, 4 (24), 135-142.
https://doi.org/10.1039/B202113G

[7]. Haynes, D. A.; Pietersen, L. K. Hydrogen bonding networks in ammonium carboxylate salts : the crystal structures of phenylethylammonium fumarate-fumaric acid, phenylethylammonium succinate-succinic acid and anilinium fumarate-fumaric acid. CrystEngComm. 2008, 10 (5), 518.
https://doi.org/10.1039/b716436j

[8]. Dziuk, B.; Ejsmont, K.; Zaleski, J. Crystalline structures of salts of oxalic acid and aliphatic amines. Chemik, 2014, 68, 391-395. https://www.europub.co.uk/articles/crystalline-structures-of-salts-of-oxalic-acid-and-aliphatic-amines-A-110304

[9]. MacDonald, J. C.; Dorrestein, P. C.; Pilley, M. M. Design of Supramolecular Layers via Self-Assembly of Imidazole and Carboxylic Acids. Crystal Growth & Design 2000, 1 (1), 29-38.
https://doi.org/10.1021/cg000008k

[10]. Dziuk, B.; Zarychta, B.; Ejsmont, K. Allylammonium hydrogen oxalate hemihydrate. Acta. Crystallogr. E. Struct. Rep. Online 2014, 70 (8), o852-o852.
https://doi.org/10.1107/S1600536814015190

[11]. Dziuk, B.; Zarychta, B.; Ejsmont, K. Crystal structure of allylammonium hydrogen succinate at 100 K. Acta. Crystallogr. E. Struct. Rep. Online 2014, 70 (9), o917-o918.
https://doi.org/10.1107/S1600536814015633

[12]. Haiduc, I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordination centers. Topology and systematization. J. Coord. Chem. 2020, 73 (11), 1619-1700.
https://doi.org/10.1080/00958972.2020.1789120

[13]. Jayashri, T.; Krishnan, G.; Viji, K. Spectral, Thermal and Antimicrobial Studies of Gamma Irradiated Potassium Diaquabis (Oxalato) Cobaltate (II). Orient. J. Chem. 2017, 33 (1), 371-377.
https://doi.org/10.13005/ojc/330144

[14]. Ameen, M.; Gilini, S. R.; Naseer, A.; Shoukat, I.; Ali, S. D.; Sadiqa, A. Synthesis and Antibacterial Activities of Mixed Ligands Complexes of Cu(II) and Zn(II) Containing Tridentate Azo Anils Ligands and Bidentate Oxalate Ion. Asian. J. Chem. 2015, 27 (11), 3988-3992.
https://doi.org/10.14233/ajchem.2015.19030

[15]. Darling, D. A.; Joema, S. E. Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications. J. Mater. Sci: Mater. Electron 2020, 31 (24), 22427-22441.
https://doi.org/10.1007/s10854-020-04744-2

[16]. Grąz, M. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential. World. J. Microbiol. Biotechnol. 2024, 40 (6), 178.
https://doi.org/10.1007/s11274-024-03973-5

[17]. Guerrini, M.; d'Agostino, S.; Grepioni, F.; Braga, D.; Lekhan, A.; Turner, R. J. Antimicrobial activity of supramolecular salts of gallium(III) and proflavine and the intriguing case of a trioxalate complex. Sci. Rep. 2022, 12 (1), 3673.
https://doi.org/10.1038/s41598-022-07813-0

[18]. Diallo, W.; Gueye, N.; Crochet, A.; Plasseraud, L.; Cattey, H. Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid). Acta. Crystallogr. E. Cryst. Commun. 2015, 71 (5), 473-475.
https://doi.org/10.1107/S2056989015005964

[19]. Diop, M. B.; Diop, L.; Plasseraud, L.; Cattey, H. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate. Acta. Crystallogr. E. Cryst. Commun. 2016, 72 (8), 1113-1115.
https://doi.org/10.1107/S2056989016011038

[20]. Toure, A.; Diop, C. A.; Diop, L.; Plasseraud, L.; Cattey, H. Ethylammonium hydrogen oxalate-oxalic acid (2/1). IUCrData 2019, 4 (5), x190635.
https://doi.org/10.1107/S2414314619006357

[21]. Bruker (2020). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.

[22]. Bruker (2016) SAINT V8.40B - Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker AXS Inc.: Madison, Wisconsin, USA.

[23]. Bruker (2016) SADABS-Bruker Nonius Area Detector Scaling and Absorption Correction -V2016/2; Bruker AXS Inc.: Madison, WI, USA.

[24]. Sheldrick, G. M. SHELXT- Integrated space-group and crystal-structure determination. Acta. Crystallogr. A. Found. Adv. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053273314026370

[25]. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[26]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[27]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[28]. Fiore, C.; Shemchuk, O.; Grepioni, F.; Turner, R. J.; Braga, D. Proflavine and zinc chloride "team chemistry": combining antibacterial agents via solid-state interaction. CrystEngComm. 2021, 23 (25), 4494-4499.
https://doi.org/10.1039/D1CE00612F

[29]. Shemchuk, O.; Braga, D.; Grepioni, F.; Turner, R. J. Co-crystallization of antibacterials with inorganic salts: paving the way to activity enhancement. RSC. Adv. 2020, 10 (4), 2146-2149.
https://doi.org/10.1039/C9RA10353H

[30]. Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2016, 6 (2), 71-79.
https://doi.org/10.1016/j.jpha.2015.11.005

[31]. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard. CLSI Document M02-A11 7th Edition; 2012.

[32]. Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. 2009. https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/kirby-bauer-disk-diffusion-susceptibility-test-protocol-pdf.pdf

[33]. Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I. Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC. Complement. Altern. Med. 2015, 15 (1).
https://doi.org/10.1186/s12906-015-0891-1

[34]. Sharma, A.; Chandraker, S.; Patel, V.; Ramteke, P. Antibacterial activity of medicinal plants against pathogens causing complicated urinary tract infections. Indian. J. Pharm. Sci. 2009, 71 (2), 136.
https://doi.org/10.4103/0250-474X.54279

[35]. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, 2008, https://doi.org/10.1002/9780470405888.
https://doi.org/10.1002/9780470405888

[36]. Mangaiyarkarasi, K.; Ravichandran, A.; Anitha, K.; Manivel, A. Synthesis, growth and characterization of L-Phenylalaninium methanesulfonate nonlinear optical single crystal. J. Mol. Struc. 2018, 1155, 758-764.
https://doi.org/10.1016/j.molstruc.2017.11.065

[37]. Hug, S. J.; Bahnemann, D. Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR. Journal of Electron Spectroscopy and Related Phenomena 2006, 150 (2-3), 208-219.
https://doi.org/10.1016/j.elspec.2005.05.006

[38]. Hamdouni, M.; Agengui, L.; Walha, S.; Kabadou, A.; Ben Salah, A. Synthesis and Crystal Structure of a New Mixed Alkali Oxalate A1−x (NH4) x (H2C2O4)(HC2O4)(H2O)2 with A = K, Rb. J. Chem. Crystallogr. 2011, 41 (11), 1742-1750.
https://doi.org/10.1007/s10870-011-0167-7

[39]. Lund Myhre, C. E.; Nielsen, C. J. Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols. Atmos. Chem. Phys. 2004, 4 (7), 1759-1769.
https://doi.org/10.5194/acp-4-1759-2004

[40]. Thomas, J. O. Hydrogen Bond Studies. CXXII. A Neutron Diffraction and X-N Deformation-Electron-Density Study of Dimethylammonium Hydrogen Oxalate, (CH3)2NH2HC2O4, at 298 K. Acta Crystallogr. B 1977, 33 (9), 2867-2876.
https://doi.org/10.1107/S0567740877009650

[41]. McCrary, P. D.; Beasley, P. A.; Gurau, G.; Narita, A.; Barber, P. S.; Cojocaru, O. A.; Rogers, R. D. Drug specific, tuning of an ionic liquid's hydrophilic-lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New. J. Chem. 2013, 37 (7), 2196.
https://doi.org/10.1039/c3nj00454f

[42]. Liu, L.; Miao, L.; Han, X.; Zhang, W. 2D Hydrogen-Bonded Molecular Crystals Showing Terminal-Group-Triggered Phase Transitions and Dielectric Responses. Crystal Growth & Design 2021, 21 (9), 5342-5348.
https://doi.org/10.1021/acs.cgd.1c00645

[43]. Ballabh, A.; Trivedi, D. R.; Dastidar, P. From Nonfunctional Lamellae to Functional Nanotubes. Org. Lett. 2006, 8 (7), 1271-1274.
https://doi.org/10.1021/ol053000i

[44]. Cho, Y. M.; Kwon, S.; Pak, Y. K.; Seol, H. W.; Choi, Y. M.; Park, D. J.; Park, K. S.; Lee, H. K. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications 2006, 348 (4), 1472-1478.
https://doi.org/10.1016/j.bbrc.2006.08.020

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).