European Journal of Chemistry 2013, 4(4), 388-395. doi:10.5155/eurjchem.4.4.388-395.826

Highly active mesoporous SiO2-TiO2 based nanocomposites for photocatalytic degradation of textile dyes and phenol


Asima Siddiqa (1,*) , Sumbul Sabir (2) , Syed Tajammul Hussain (3) , Bakhtiar Muhammad (4)

(1) National Centre for Physics, Quaid-i-Azam University Complex, Islamabad, 44000, Pakistan
(2) Chemistry Department, Hazara University, Mansehra, 21120, Pakistan
(3) National Centre for Physics, Quaid-i-Azam University Complex, Islamabad, 44000, Pakistan
(4) Chemistry Department, Hazara University, Mansehra, 21120, Pakistan
(*) Corresponding Author

Received: 10 May 2013, Accepted: 03 Jun 2013, Published: 31 Dec 2013

Abstract


Titania-silica nanocomposites (20% SiO2-TiO2, 30% SiO2-TiO2, 40% SiO2-TiO2 and 50 % SiO2-TiO2) with tailored morphology and tunable band energy have been synthesized successfully via micro emulsion method. The morphology, chemical composition, band gap energy and stability of prepared nanocomposites were investigated by XRD, SEM/EDX, FT-IR, DRS and TGA. While textural parameters such as surface area, pore volume, and pore diameter were evaluated by nitrogen adsorption-desorption isotherms. The prepared nanocomposites were employed for photocatalytic degradation of phenol and dyes (methyl yellow, auramine O, turquoise blue G) under visible light irradiations. The results of photocatalytic degradation and kinetic parameter (Kapp) strongly suggest that 20% SiO2-TiO2 showed remarkable photocatalytic efficiency in comparison to SiO2-TiO2 nanocomposites with high silica contents. These findings proved significantly that 20% SiO2-TiO2 have marked impact on the photocatalytic efficiency due to its high pore volume, more diameter, high availability of anatase TiO2 in nanocomposite and reduced bandgap energy.

4_4_388_395

Keywords


Band gap; Microemulsion; Kinetic parameter; Percent degradation; Photocatalytic activity; SiO2-TiO2 nanocomposite

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.4.4.388-395.826

Article Metrics


This Abstract was viewed 1040 times | PDF Article downloaded 477 times

Citations

/


[1]. Morteza Montazerozohori, Masoud Nasr-Esfahani, Zohreh Moradi-shammi, Ameneh Malekhoseini
Photocatalytic decolorization of auramine and its kinetics study in the presence of two different sizes titanium dioxide nanoparticles at various buffer and non-buffer media
Journal of Industrial and Engineering Chemistry  21, 1044, 2015
DOI: 10.1016/j.jiec.2014.05.014
/


[2]. Zhenzhao Pei, Pei Wang, Zhiguo Li
Investigation of ZnTiO3/TiO2 composites and their application in photocatalysis
European Journal of Chemistry  10(1), 7, 2019
DOI: 10.5155/eurjchem.10.1.7-11.1824
/


[3]. Monika Magdalena Lukomska-Szymanska, Joanna Kleczewska, Dariusz Marian Bielinski, Witold Jakubowski, Jerzy Sokolowski
Bactericidal properties of experimental dental composites based on dimethacrylate resins reinforced by nanoparticles
European Journal of Chemistry  5(3), 419, 2014
DOI: 10.5155/eurjchem.5.3.419-423.1019
/


[4]. A. B. Shishmakov, O. V. Koryakova, Yu. V. Mikushina, D. O. Antonov, L. A. Petrov
Synthesis of spherical TiO2-SiO2 granules by joint hydrolysis of tetrabutoxytitanium and tetraethoxysilane, with KU-23 polymeric cation exchanger used as matrix
Russian Journal of Applied Chemistry  87(9), 1229, 2014
DOI: 10.1134/S1070427214090067
/


[5]. Satish Laxman Shinde, Karuna Kar Nanda
Photon-Free Degradation of Dyes by Ge/GeO2 Porous Microstructures
ACS Sustainable Chemistry & Engineering  7(7), 6611, 2019
DOI: 10.1021/acssuschemeng.8b05549
/


References

[1]. Montgomery, M. A.; Elimelech, M. Envir. Sci. Tech. 2007, 41, 17-24.
http://dx.doi.org/10.1021/es072435t
PMid:17265923

[2]. Singh, P.; Bengtson, L. J. Hydrol. 2005, 300, 140-154.
http://dx.doi.org/10.1016/j.jhydrol.2004.06.005

[3]. Richardson, S. Anal. Chem. 2003, 75, 2831-2857.
http://dx.doi.org/10.1021/ac0301301

[4]. Kyung, H.; Lee J.; Choi, W. Envir. Sci. Tech. 2005, 39, 2376-2382.
http://dx.doi.org/10.1021/es0492788
PMid:15871279

[5]. Li, X. J. Phys. Chem. C 2007, 111, 13109-13116.

[6]. Weiyang, D.; Chul, W. L.; Xinchun, L.; Yaojun, S.; Weiming, H.; Guoshun, Z.; Shicheng, Z.; Jianmin, C.; Huiqi, H.; Dongyuan, Z. App. Catal. B-Environ. 2010, 95, 197-200.

[7]. Weber, E. J.; Adams, R. L. Envir. Sci. Tech. 1995, 29, 1163-1165.
http://dx.doi.org/10.1021/es00005a005
PMid:22192007

[8]. Jung, K. Y.; Park, S. B. Chem. Eng. J. 2001, 18, 879-888.

[9]. Ollis, D. F. Envir. Sci. Tech. 1985, 19, 480-486.
http://dx.doi.org/10.1021/es00136a002
PMid:22257346

[10]. Benkli, Y. E.; Can, M. F.; Turan, M.; Celik, M. S. Water Resour. 2005, 39, 487-493.

[11]. Selcuk, H. Dyes Pigments 2005, 64, 217-222.
http://dx.doi.org/10.1016/j.dyepig.2004.03.020

[12]. Ghoreishi, S. M.; Haghighi, R. Chem. Eng. J. 2003, 95163-95169.

[13]. Legrini, O.; Oliveros, E.; Braun, A. M. Chem. Rev. 1993, 93, 671-698.
http://dx.doi.org/10.1021/cr00018a003

[14]. Vandevivere, P. C.; Bianchi, R. Verstraete, W. J. Chem. Technol. Biot. 1998, 72, 289-302.
http://dx.doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.3.CO;2-R

[15]. Neelavannan, M. G.; Revathi, M.; Basha, C. A. J. Hazard. Mater. 2007, 149, 371-378.
http://dx.doi.org/10.1016/j.jhazmat.2007.04.025
PMid:17509754

[16]. Hussain, S. T.; Siddiqa, A.; Ilyas, H.; Muhammad, B. Int. Rev. Chem. Eng. Rapid Commun. (IRECHE). 2012, 4, 547-553.

[17]. Lalov, I. G.; Guerginov, I. I.; Krysteva, M. A.; Fartsov, K. Water Resour. 2000, 34, 1503-1506.

[18]. Gogate, R.; Pandit, A. B. Adv. Environ. Res. 2004, 8, 501-551.
http://dx.doi.org/10.1016/S1093-0191(03)00032-7

[19]. Chen, D.; Ray, A. K. Chem. Eng. Sci. 2001, 56, 1561-1570.
http://dx.doi.org/10.1016/S0009-2509(00)00383-3

[20]. Zhao, C.; Chen, Y.; Wang, W.; Ma, J.; Zhao, T. Rajh, L. Envir. Sci. Tech. 2008, 42, 308-314.
http://dx.doi.org/10.1021/es071770e
PMid:18350913

[21]. Xu, Y.; Langford, C. H. J. Phys. Chem. C 1995, 99, 11501-11507.
http://dx.doi.org/10.1021/j100029a031

[22]. Habibi, A.; Hassan, S. M. J. Photoch. Photobio. A: Chem. 2005, 172, 89-96.
http://dx.doi.org/10.1016/j.jphotochem.2004.11.009

[23]. Tada, H.; Kubo, Y.; Akazawa, M. Languir 1998, 14, 2936-2939.
http://dx.doi.org/10.1021/la971015m

[24]. Chih-Hung, H.; Kai-Ping, C.; Hong-De, O.; Yu-Chun, C.; Chang, E.; Chu-Fang, W. J. Hazar. Mater. 2011, 186, 1174-1182.
http://dx.doi.org/10.1016/j.jhazmat.2010.11.125
PMid:21176861

[25]. Xingtao, G.; Israel, E. Catal. Today 1999, 51, 233-254.
http://dx.doi.org/10.1016/S0920-5861(99)00048-6

[26]. Yuying, P. U.; Fang, J.; Feng, P.; Baojian, L. I.; Lei, H. Chinese J. Catal. 2007, 28, 251-256.
http://dx.doi.org/10.1016/S1872-2067(07)60023-0

[27]. Ali, M.; Mohammad, A. B.; Naser, M. Photochem. Photobiol. 2011, 87, 795-801.
http://dx.doi.org/10.1111/j.1751-1097.2011.00930.x
PMid:21466559

[28]. Luis, P.; Maria, J. M. j. Phys. Chem. C 2011, 15, 22851-22862.

[29]. Natalia, N. T.; Alexander, A. P.; Emil, R. Langmuir 2005, 21, 10545-10554.
http://dx.doi.org/10.1021/la0514516
PMid:16262319

[30]. Zhe-Ying, S.; Long-Yu, L.; Yat, L.; Chang-Chun, W. J. Colloid. Interf. Sci. 2011, 354, 196-201.

[31]. Hussain, S. T.; Siddiqa, A. Int. J. Environ. Sci. Te. 2011, 8, 351-362.
http://dx.doi.org/10.1007/BF03326222

[32]. Hu, C.; Wang, Y.; Tang, H. Appl. Catal. B: Environ. 2001, 35, 95-105.
http://dx.doi.org/10.1016/S0926-3373(01)00236-3

[33]. Lee, J. W.; Othman, M. R.; Eom, Y.; Lee, T. G.; Kim, W. S.; Kim, J. Appl. Catal. B: Environ. 2001, 35, 95-105.
http://dx.doi.org/10.1016/S0926-3373(01)00236-3

[34]. Dina, F. R.; Johann, M. S.; Qianqian, Y.; Vit, K.; Jiri, R.; Thomas, B. Chem. Mater. 2009, 21, 2410-2417.
http://dx.doi.org/10.1021/cm803494u

[35]. Carl, A.; Allen, J. B. J. Phys. Chem. B 1997, 101, 2611-2616.
http://dx.doi.org/10.1021/jp9626982


How to cite


Siddiqa, A.; Sabir, S.; Hussain, S.; Muhammad, B. Eur. J. Chem. 2013, 4(4), 388-395. doi:10.5155/eurjchem.4.4.388-395.826
Siddiqa, A.; Sabir, S.; Hussain, S.; Muhammad, B. Highly active mesoporous SiO2-TiO2 based nanocomposites for photocatalytic degradation of textile dyes and phenol. Eur. J. Chem. 2013, 4(4), 388-395. doi:10.5155/eurjchem.4.4.388-395.826
Siddiqa, A., Sabir, S., Hussain, S., & Muhammad, B. (2013). Highly active mesoporous SiO2-TiO2 based nanocomposites for photocatalytic degradation of textile dyes and phenol. European Journal of Chemistry, 4(4), 388-395. doi:10.5155/eurjchem.4.4.388-395.826
Siddiqa, Asima, Sumbul Sabir, Syed Tajammul Hussain, & Bakhtiar Muhammad. "Highly active mesoporous SiO2-TiO2 based nanocomposites for photocatalytic degradation of textile dyes and phenol." European Journal of Chemistry [Online], 4.4 (2013): 388-395. Web. 17 Sep. 2019
Siddiqa, Asima, Sabir, Sumbul, Hussain, Syed, AND Muhammad, Bakhtiar. "Highly active mesoporous SiO2-TiO2 based nanocomposites for photocatalytic degradation of textile dyes and phenol" European Journal of Chemistry [Online], Volume 4 Number 4 (31 December 2013)

DOI Link: https://doi.org/10.5155/eurjchem.4.4.388-395.826

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.