European Journal of Chemistry 2014, 5(2), 247-251 | doi: | Get rights and content

Issue cover


Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods

Naushad Ahmad (1) , Rizwan Wahab (2,*) , Suliman Yusuf Al-Omar (3)

(1) Department of Chemistry, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
(2) Department of Zoology, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
(3) Department of Zoology, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
(*) Corresponding Author

Received: 15 Nov 2013 | Revised: 27 Dec 2013 | Accepted: 27 Dec 2013 | Published: 30 Jun 2014 | Issue Date: June 2014


Thermal analysis techniques such as thermogravimetric analysis (TGA) have been widely used because they provide rapid quantitative determination of various processes under isothermal or non-isothermal conditions. It allows the estimation of effective kinetic and thermodynamic parameters for various decomposition and thermal reactions. In this article, thermal degradation of sodium carboxymethyl cellulose (SMC) is investigated by means of dynamic thermogravimetric/derivative thermogravimetry (TG/DTG) in helium atmosphere with the flow rate 100 mL/min at the heating rate of 10-30 °C/min until the furnace wall temperature reached 700 °C. The non-isothermal degradation of SMC found to be taking place occurred major one step and minor two steps. Using a non-isothermal kinetic method based on a TGA data, kinetic parameters (Eand ln A) are calculated by Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO) and Friedman methods. The results of studied polymer demonstrated that E and ln A is varied with function of conversion (α), which is in good agreement with literature data.


Kinetics; Cellulose; Thermal reactions; Thermal degradation; Isoconversional methods; Sodium carboxymethyl cellulose

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.5.2.247-251.971

Links for Article

| | | | | | |

| | | | | | |

| | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 2699 times | icon graph PDF Article downloaded 700 times

Funding information

Deanship of Scientific Research, College of Science Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia



[1]. G. Priya, U. Narendrakumar, I. Manjubala
Thermal behavior of carboxymethyl cellulose in the presence of polycarboxylic acid crosslinkers
Journal of Thermal Analysis and Calorimetry  138(1), 89, 2019
DOI: 10.1007/s10973-019-08171-2

[2]. Faouzia Khili, Amel Dakhlaoui Omrani
Synthesis of nanocellulose/cobalt oxide composite for efficient degradation of Rhodamine B by activation of peroxymonosulfate
European Journal of Chemistry  10(1), 19, 2019
DOI: 10.5155/eurjchem.10.1.19-25.1789

[3]. Kaman Singh, Ashok Kumar
Physiochemical aspects for the adsorption behavior of sodium carboxymethyl cellulose onto mesoporous granular fine quartz surface from its aqueous solutions
Separation Science and Technology  , 1, 2021
DOI: 10.1080/01496395.2021.1878373

[4]. Matthew R. Burton, Shahin Mehraban, James McGettrick, Trystan Watson, Nicholas P. Lavery, Matthew J. Carnie
Earth abundant, non-toxic, 3D printed Cu2−xS with high thermoelectric figure of merit
Journal of Materials Chemistry A  7(44), 25586, 2019
DOI: 10.1039/C9TA10064D

[5]. Patricio J. Robles Barros, Diego Palmiro Ramirez Ascheri, Mikaele Lorrany Siqueira Santos, Cleiber Cintra Morais, José L. Ramirez Ascheri, Roberta Signini, Danilo Martins dos Santos, André José de Campos, Ivano Alessandro Devilla
Soybean hulls: Optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis
International Journal of Biological Macromolecules  144, 208, 2020
DOI: 10.1016/j.ijbiomac.2019.12.074

[6]. Sara Kaabi Falahieh Asl, Sandor Nemeth, Ming Jen Tan
Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate
Journal of Biomedical Materials Research Part B: Applied Biomaterials  104(8), 1643, 2016
DOI: 10.1002/jbm.b.33505

[7]. Duraikkannu Shanthana Lakshmi, Nitin Trivedi, C.R.K. Reddy
Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose
Carbohydrate Polymers  157, 1604, 2017
DOI: 10.1016/j.carbpol.2016.11.042

[8]. Ł. Szymański, E. Olejnik, T. Tokarski, P. Kurtyka, D. Drożyński, S. Żymankowska-Kumon
Reactive casting coatings for obtaining in situ composite layers based on Fe alloys
Surface and Coatings Technology  350, 346, 2018
DOI: 10.1016/j.surfcoat.2018.06.085


[1]. Saddawi, A.; Jones, J. M.; Williams, A.; Wojtowicz, M. A. Energ. Fuel. 2010, 24, 1274-1282.

[2]. Souza, D.; Castillo, T. E.; Rodriguez, R. J. S. J. Therm. Anal. Calorim. 2012, 109(3), 1353-1364.

[3]. Mohan, D.; Pittman, C. U.; Steele, P. H. Energ. Fuel. 2006, 20, 848-889.

[4]. Antal, M. J. J.; Varhegyi, G. Ind. Eng. Chem. Res. 1995, 34, 703-717.

[5]. Abidi, N.; Hequet, E.; Cabrales, L.; Gannaway, J.; Wilkins, T.; Wells, L. W. J. App. Polym. Sci. 2008, 107, 476-486.

[6]. Abidi, N.; Hequet, E.; Ethridge, D. J. App. Polym. Sci. 2007, 103, 3476-3482.

[7]. Stamm, A. J. Ind. Eng. Chem. 1956, 48, 413-417.

[8]. Dahiya, J. B.; Kumar, K.; Hagedorn, M. M.; Bockhorn, H. Polym. Int. 2008, 57, 722-729.

[9]. Majewicz, T. G.; Podlas, T. J. Cellulose ether. In Encyclopedia of chemicaltechnology, 4th Ed., New York: Wiley, 1966, Vol. 5, pp. 545-547.

[10]. Majewicz, T. G.; Podlas, T. J.; Kroschwitz, J. I. Kirk-Othmer. Cellulose Ethers, Kroschwitz, J. I. (Editor), Kirk-Othmer Concise Encyclopedia of Chemical Technology, Wiley-Interscience, 2005.

[11]. Hui, L. O.; Kumar, R. N.; Rozman, H. D.; Noor, M.; Azemi, M. Polymers 2005, 59, 57-69.

[12]. Muzzarelli, R. A. A. Carbohydr. Polym. 1966, 29, 309-316.

[13]. Vander, P.; Varum, K. M.; Domard, A.; El-Geddari, N. E.; Moerschbacher, B. Plant Physiol. 1998, 118, 1353-1359.

[14]. Peluso, G.; Petillo, O.; Ranieri, M.; Santin, M.; Ambrosio, L.; Calabro, D.; Avallone, B.; Balsamo, G. Biomaterials 1994, 15, 1215-1220.

[15]. Gerentes, P.; Vachoud, L.; Doury, J.; Domard, A. Biomaterials 2002, 23, 1295-1302.

[16]. Despond, S.; Espuche, E.; Domard, A. J. Polym. Sci. Part B 2001, 39, 3114-3127.

[17]. Kumar, G.; Bristow, J. F.; Smith, P. J.; Payne, G. F. Polymer. 2000, 41, 2157-2168.

[18]. Holme, H. K.; Foros, H.; Pettersen, H.; Dornish, M.; Smidsrod, O. Carbohydr. Polym. 2001, 46, 287-294.

[19]. Piotr, U.; Von Clemens, S. J. Chem. Soc. Perkin Trans. 2000, 2, 2022-2028.

[20]. Shao, J.; Yang, Y.; Zhong, Q. Polym. Degrad. Stab. 2003, 82, 395-398.

[21]. Kissinger, H. E. Anal. Chem. 1957, 29, 1702-1706.

[22]. Akahira, T.; Sunose, T. Chiba Inst. Technol. 1971, 16, 22-31.

[23]. Flynn, J. H.; Wall, L. A. J. Polym. Sci. Part C-Polym. Lett. 1966, 4, 323-328.

[24]. Ozawa, T. Bull. Chem. Soc. Japan 1965, 38, 1881-1882.

[25]. Doyle, C. D. Nature 1965, 207, 290-291.

[26]. Friedman, H. L. J. Polym. Sci. C 1964, 6, 183-195.

[27]. Volker, S.; Rieckmann, Th. J. Anal. Appl. Pyrol. 2002, 62, 165-177.

[28]. Lede, J. Ind. Eng. Chem. Res. 2002, 39, 893-898.

[29]. Gallagher, P. K. Thermogravimetry and Thermomagnetometry, in Handbook of Thermal Analysis and Calorimetry, Ed. Brown, M. E. Elsevier Science B. V., Amsterdam, 1998, 1, pp. 225-278.

[30]. Gongwer, P. E.; Arisawa, H.; Brill, T. B. Combust Flame. 1997, 109, 370-381.

[31]. Brown, M. E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A.; Opfermann, J.; Strey, R.; Anderson, H. L.; Kemmler, A. R.; Keuleers, J.; Desseyn, H. O.; Chao-Rui, L.; Tang, T. B.; Roduit, B.; Malek, J.; Mitsuhashi, T. Thermochim. Acta 2000, 355(1-2), 125-143.

[32]. Maciejewski, M. Thermochim. Acta 2000, 355, 145-154.

[33]. Vyazovkin, S.; Wight, A. C. Annu. Rev. Phys. Chem. 1997, 48, 125-149.

[34]. Lomakin, S. M.; Rogovina, S. Z.; Grachev, A. V.; Prut, E. V.; Alexanyan, Ch. V. Thermochim. Acta 2011, 521, 66-73.

[35]. Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Polym. Degrad. Stab. 2006, 91, 60-68.

How to cite

Ahmad, N.; Wahab, R.; Al-Omar, S. Eur. J. Chem. 2014, 5(2), 247-251. doi:10.5155/eurjchem.5.2.247-251.971
Ahmad, N.; Wahab, R.; Al-Omar, S. Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods. Eur. J. Chem. 2014, 5(2), 247-251. doi:10.5155/eurjchem.5.2.247-251.971
Ahmad, N., Wahab, R., & Al-Omar, S. (2014). Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods. European Journal of Chemistry, 5(2), 247-251. doi:10.5155/eurjchem.5.2.247-251.971
Ahmad, Naushad, Rizwan Wahab, & Suliman Yusuf Al-Omar. "Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods." European Journal of Chemistry [Online], 5.2 (2014): 247-251. Web. 6 Mar. 2021
Ahmad, Naushad, Wahab, Rizwan, AND Al-Omar, Suliman. "Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods" European Journal of Chemistry [Online], Volume 5 Number 2 (30 June 2014)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2014, 5(2), 247-251 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c)

© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.