European Journal of Chemistry 2020, 11(2), 120-132 | doi: https://doi.org/10.5155/eurjchem.11.2.120-132.1974 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders


Javeed Ahmad War (1) orcid , Santosh Kumar Srivastava (2,*) orcid

(1) Synthetic Organic Chemistry and Molecular Modelling Laboratory, Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, 470003, India
(2) Synthetic Organic Chemistry and Molecular Modelling Laboratory, Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, 470003, India
(*) Corresponding Author

Received: 24 Feb 2020 | Revised: 01 Apr 2020 | Accepted: 03 Apr 2020 | Published: 30 Jun 2020 | Issue Date: June 2020

Abstract


A new series of imidazole linked thiazolidinone hybrid molecules was designed and subsequently synthesized through a feasible, three step reaction protocol. The structures of these molecules were established using FT-IR, 1H NMR, 13C NMR and HRMS techniques. In vitro susceptibility tests against some Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) exhibited broad spectrum potency of the molecules. The most potent molecule (S2A7) amongst the screened molecules, showed minimum inhibitory concentration (MIC) value not less than 2.0 µg/mL which was at par with the reference drug Streptomycin. Structure activity relationships revealed nitro and chloro groups being crucial for bioactivity when present at meta position of arylidene ring in 3-(3-(imidazol-1-yl)propyl)-5-(benzylidene)-2-(phenylimino)thiazolidin-4-one. Deoxyribonucleic acid (DNA)and bovine serum albumin (BSA) binding studies for S2A7 under simulated physiological pH were probed using UV-Visible, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that S2A7 has strong binding affinity towards DNA and binds at the minor groove of DNA with binding constant (Kb) of 0.1287×102 L/mol. Molecular docking simulations of S2A7 with DNA and BSA predicted binding affinity of -9.2 and -7.2 kcal/mol, respectively. Van der Waals forces and hydrogen bonding interactions were predicted as the main forces of interaction. With DNA, S2A7 exhibited specific binding affinity towards adenine-thiamine base pairs. The compound S2A7 forms a stable complex with BSA by binding at subdomain IIIA implying high bio-distribution of the compound.


Keywords


Thiourea; Imidazole; BSA binding; DNA binding; Molecular docking; Antimicrobial activity

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.11.2.120-132.1974

Links for Article


| | | | | | |

| | | | | | |

| |

Related Articles




Article Metrics

This Abstract was viewed 267 times | PDF Article downloaded 90 times

Funding information


Department of Science and Technology, INSPIRE program (INSPIRE ID: IF120399), New-Delhi, India.

References

[1]. Hofer, U. Nature Rev. Microbiol. 2019, 17(1), 3-3.
https://doi.org/10.1038/s41579-018-0125-x

[2]. Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Science 2019, 365(6459), 1-5.
https://doi.org/10.1126/science.aaw1944

[3]. Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. Front. Public Health 2019, 7, 151, 1-25.
https://doi.org/10.3389/fpubh.2019.00151

[4]. Organization, W. H. Antimicrobial resistance: global report on surveillance. World Health Organization, ISBN: 978 92-4-156474-8, 2014.

[5]. Dougan, G.; Dowson, C.; Overington, J.; Participants, N. G. A. D. S. Drug Discov. Today 2019, 24(2), 452-461.
https://doi.org/10.1016/j.drudis.2018.11.015

[6]. Chernov, V. M.; Chernova, O. A.; Mouzykantov, A. A.; Lopukhov, L. L.; Aminov, R. I. Expert Opin. Drug Dis. 2019, 14(5), 455-468.
https://doi.org/10.1080/17460441.2019.1588880

[7]. Desai, N.; Joshi, V.; Rajpara, K.; Makwana, A. H. Arabian J. Chem. 2017, 10, S589-S599.
https://doi.org/10.1016/j.arabjc.2012.10.020

[8]. Obinata, D.; Ito, A.; Fujiwara, K.; Takayama, K. I.; Ashikari, D.; Murata, Y.; Yamaguchi, K.; Urano, T.; Fujimura, T.; Fukuda, N. Cancer Sci. 2014, 105(10), 1272-1278.
https://doi.org/10.1111/cas.12493

[9]. Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G. X. Eur. J. Med. Chem. 2018, 143, 958-969.
https://doi.org/10.1016/j.ejmech.2017.11.100

[10]. Devi, P. B.; Samala, G.; Sridevi, J. P.; Saxena, S.; Alvala, M.; Salina, E. G.; Sriram, D.; Yogeeswari, P. ChemMedChem 2014, 9(11), 2538-2547.
https://doi.org/10.1002/cmdc.201402171

[11]. Hidalgo‐Figueroa, S.; Ramirez‐Espinosa, J. J.; Estrada‐Soto, S.; Almanza‐Perez, J. C.; Roman‐Ramos, R.; Alarcon‐Aguilar, F. J.; Hernandez‐Rosado, J. V.; Moreno‐Diaz, H.; Diaz‐Coutino, D.; Navarrete‐Vazquez, G. Chem. Bio. Drug Des. 2013, 81(4), 474-483.
https://doi.org/10.1111/cbdd.12102

[12]. Barros, F. W.; Silva, T. G.; da Rocha Pitta, M. G.; Bezerra, D. P.; Costa-Lotufo, L. V.; de Moraes, M. O.; Pessoa, C.; de Moura, M. A. F.; de Abreu, F. C.; de Lima, M. d. C. A. Bioorg. Med. Chem. 2012, 20(11), 3533-3539.
https://doi.org/10.1016/j.bmc.2012.04.007

[13]. Decker, M. Design of Hybrid Molecules for Drug Development, Elsevier, ISBN: 978-0-08-101011-2, 2017.

[14]. Nirwan, S.; Chahal, V.; Kakkar, R. J. Heterocyc. Chem. 2019, 56(4), 1239-1253.
https://doi.org/10.1002/jhet.3514

[15]. Desai, N.; Joshi, V.; Rajpara, K.; Vaghani, H.; Satodiya, H. Med. Chem. Res. 2013, 22(4), 1893-1908.
https://doi.org/10.1007/s00044-012-0190-z

[16]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Spectrochim. Acta A 2017, 173, 270-278.
https://doi.org/10.1016/j.saa.2016.07.054

[17]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Eur. J. Chem. 2016, 7(3), 271-279.
https://doi.org/10.5155/eurjchem.7.3.271-279.1427

[18]. War, J. A.; Srivastava, S. K.; Srivastava, S. D. Luminescence 2017, 32(1), 104-113.
https://doi.org/10.1002/bio.3156

[19]. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. Nature Rev. Microbiol. 2010, 8(6), 423-435.
https://doi.org/10.1038/nrmicro2333

[20]. Pindur, U.; Jansen, M.; Lemster, T. Curr. Med. Chem. 2005, 12(24), 2805-2847.
https://doi.org/10.2174/092986705774454698

[21]. Dar, A. M.; Gatoo, M. A.; Ahmad, A.; Ahmad, M. S.; Najar, M. H. J. Fluoresc. 2015, 25(5), 1377-1387.
https://doi.org/10.1007/s10895-015-1628-8

[22]. Paulikova, H.; Vantova, Z.; Hunakova, L.; Cizekova, L.; Carna, M.; Kozurkova, M.; Sabolova, D.; Kristian, P.; Hamulakova, S.; Imrich, J. Bioorg. Med. Chem. 2012, 20(24), 7139-7148.
https://doi.org/10.1016/j.bmc.2012.09.068

[23]. Shi, J. H.; Liu, T. T.; Jiang, M.; Chen, J.; Wang, Q. J. Photochem. Photobiol. B: Biol. 2015, 147, 47-55.

[24]. Dervan, P. B.; Edelson, B. S. Curr. Opin. Struct. Biol. 2003, 13(3), 284-299.
https://doi.org/10.1016/S0959-440X(03)00081-2

[25]. Drew, W. L.; Barry, A.; O'Toole, R.; Sherris, J. C. Appl. Environ. Microbiol. 1972, 24(2), 240-247.
https://doi.org/10.1128/AEM.24.2.240-247.1972

[26]. Wiegand, I.; Hilpert, K.; Hancock, R. E. Nature Prot. 2008, 3(2), 163-175.
https://doi.org/10.1038/nprot.2007.521

[27]. Molinspiration Cheminformatics, Web server, Retrieved April 01, 2020, from www.molinspiration.com.

[28]. Molsoft LLC, Web server, Retrieved April 01, 2020, from www.molsoft.com.

[29]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[30]. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31(2), 455-461.

[31]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2012, 64, 4-17.
https://doi.org/10.1016/j.addr.2012.09.019

[32]. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43(20), 3714-3717.
https://doi.org/10.1021/jm000942e

[33]. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45(12), 2615-2623.
https://doi.org/10.1021/jm020017n

[34]. Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. 2004, 101(48), 16789-16794.
https://doi.org/10.1073/pnas.0407607101

[35]. Fei, Y.; Lu, G.; Fan, G.; Wu, Y. Anal. Sci. 2009, 25(11), 1333-1338.
https://doi.org/10.2116/analsci.25.1333

[36]. Sirajuddin, M.; Ali, S.; Badshah, A. J. Photochem. Photobiol. B: Biol. 2013, 124, 1-19.
https://doi.org/10.1016/j.jphotobiol.2013.03.013

[37]. Rafique, B.; Khalid, A. M.; Akhtar, K.; Jabbar, A. Biosens. Bioelectron. 2013, 44, 21-26.
https://doi.org/10.1016/j.bios.2012.12.028

[38]. Kumar, C. V.; Punzalan, E. H.; Tan, W. B. Tetrahedron 2000, 56(36), 7027-7040.
https://doi.org/10.1016/S0040-4020(00)00526-3

[39]. Wang, T.; Zhao, Z.; Zhang, L.; Ji, L. J. Mol. Struc. 2009, 937(1-3), 65-69.
https://doi.org/10.1016/j.molstruc.2009.08.015

[40]. Baguley, B. Mol. Cell. Biochem. 1982, 43(3), 167-181.
https://doi.org/10.1007/BF00223008

[41]. Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. J. Comput. Aided Mol. Des. 2002, 16(3), 151-166.
https://doi.org/10.1023/A:1020155510718

[42]. Ricci, C. G.; Netz, P. A. J. Chem. Inform. Model. 2009, 49(8), 1925-1935.
https://doi.org/10.1021/ci9001537

[43]. Shen, G. F.; Liu, T. T.; Wang, Q.; Jiang, M.; Shi, J. H. J. Photochem. Photobiol. B: Biol. 2015, 153, 380-390.
https://doi.org/10.1016/j.jphotobiol.2015.10.023

How to cite


War, J.; Srivastava, S. Eur. J. Chem. 2020, 11(2), 120-132. doi:10.5155/eurjchem.11.2.120-132.1974
War, J.; Srivastava, S. Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders. Eur. J. Chem. 2020, 11(2), 120-132. doi:10.5155/eurjchem.11.2.120-132.1974
War, J., & Srivastava, S. (2020). Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders. European Journal of Chemistry, 11(2), 120-132. doi:10.5155/eurjchem.11.2.120-132.1974
War, Javeed, & Santosh Kumar Srivastava. "Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders." European Journal of Chemistry [Online], 11.2 (2020): 120-132. Web. 1 Dec. 2020
War, Javeed, AND Srivastava, Santosh. "Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders" European Journal of Chemistry [Online], Volume 11 Number 2 (30 June 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.11.2.120-132.1974

| | | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2020, 11(2), 120-132 | doi: https://doi.org/10.5155/eurjchem.11.2.120-132.1974 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.