European Journal of Chemistry

Design, synthesis and characterization of MOF-199 and ZIF-8: Applications in the adsorption of phenols derivatives in aqueous solution



Main Article Content

Liliana Giraldo
Marlon Bastidas-Barranco
Pablo Húmpola
Juan Carlos Moreno-Piraján

Abstract

In this work, the adsorption characteristics of metal-organic frameworks (MOFs: MOF-199 and ZIF-8) with two different types of structure were analyzed. MOF-199 consists of copper-based metal clusters while the ZIF-8 consists of organic molecules interlaced with zinc atoms and these have octahedral morphology and typical rhombic dodecahedron shape, respectively. The results of phenol (Ph) and p-nitro phenol (PNP) adsorption capacity from aqueous solution show that MOF-199 has a higher adsorption capacity: Ph 79.55% and PNP 89.3%, while for ZIF-8 the adsorption capacity was Ph 65.5% and PNP 77.0%. Adsorption of phenols was fit to Langmuir, Sips and Redlich-Peterson models and kinetics by pseudo-second order. Gibbs free energy (ΔG°) shows that adsorption processes studied are spontaneous.


icon graph This Abstract was viewed 4222 times | icon graph Article PDF downloaded 855 times

How to Cite
(1)
Giraldo, L.; Bastidas-Barranco, M.; Húmpola, P.; Moreno-Piraján, J. C. Design, Synthesis and Characterization of MOF-199 and ZIF-8: Applications in the Adsorption of Phenols Derivatives in Aqueous Solution. Eur. J. Chem. 2017, 8, 293-304.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Shen, H. M.; Zhua, G. Y.; Yua, W. B.; Wua, H. K.; Jib, H. B.; Shia, H. X. Shea, Y. B.; Zheng, Y. F. Appl. Surf. Sci. 2015, 356, 1155-1167.
https://doi.org/10.1016/j.apsusc.2015.08.203

[2]. Arasteh, R.; Masoumi, M.; Rashidi, A. M.; Moradi, L.; Samimi, V.; Mostafavi, S. T. Appl. Surf. Sci. 2010, 256, 4447-4455.
https://doi.org/10.1016/j.apsusc.2010.01.057

[3]. Liu, W.; Jiang, X. Y.; Chen, X. Q. Appl. Surf. Sci. 2014, 320, 764-771.
https://doi.org/10.1016/j.apsusc.2014.09.165

[4]. Ofomaja, A. E. Unuabonah, E. I. Carbohyd. Polym. 2011, 83, 1192-1200.
https://doi.org/10.1016/j.carbpol.2010.09.023

[5]. Cotoruelo, L. M.; Marques, M. D.; Diaz, F. J.; Rodriguez-Mirasol, J.; Rodriguez, J. J.; Cordero, T. Chem. Eng. J. 2012, 184, 176-183.
https://doi.org/10.1016/j.cej.2012.01.026

[6]. Sarkar, B.; Xi, Y. F.; Megharaj, M.; Krishnamurti, G. S. R.; Naidu, R. J. Colloid. Interf. Sci. 2010, 350, 295-304.
https://doi.org/10.1016/j.jcis.2010.06.030

[7]. Han, S.; Zhao, F.; Sun, J.; Wang, B.; Wei, R. Y.; Yan, S. Q. J. Magn. Magn. Mater. 2013, 341, 133-137.
https://doi.org/10.1016/j.jmmm.2013.04.018

[8]. Isichei, T. O.; Okieimen, F. E. Environ. Pollut. 2014, 3, 99-111.

[9]. Ahmad, F.; Daud, W. M. A. W.; Ahmad, M. A.; Radzi, R. Chem. Eng. J. 2011, 178, 461-467.
https://doi.org/10.1016/j.cej.2011.10.044

[10]. Xue, G. H.; Gao, M. L.; Gu, Z.; Luo, Z. X.; Hu, Z. C. Chem. Eng. J. 2013, 218, 223-231.
https://doi.org/10.1016/j.cej.2012.12.045

[11]. Sarkar, B.; Megharaj, M.; Xi, Y. F.; Naidu, R. Chem. Eng. J. 2012, 185, 35-43.
https://doi.org/10.1016/j.cej.2011.05.062

[12]. Sun, Y. Y.; Zhou, J. B.; Cai, W. Q.; Zhao, R. S.; Yuan, J. P. Appl. Surf. Sci. 2015, 345, 897-903.
https://doi.org/10.1016/j.apsusc.2015.05.041

[13]. Liu, B. J.; Yang, F.; Zou, Y. X.; Peng, Y. J. Chem. Eng. Data. 2014, 59, 1476-1482.
https://doi.org/10.1021/je4010239

[14]. Adam, O. E. A. A.; Al-Dujaili, A. H. J. Chem. 2013, 1-8.
https://doi.org/10.1155/2013/694029

[15]. Park, Y.; Ayoko, G. A.; Kurdi, R.; Horvath, E.; Kristof, J.; Frost, R. L. J. Colloid. Interf. Sci. 2013, 406, 196-208.
https://doi.org/10.1016/j.jcis.2013.05.027

[16]. Bastami, T. R.; Entezari, M. H.; Chem. Eng. J. 2012, 210, 510-519.
https://doi.org/10.1016/j.cej.2012.08.011

[17]. Rivera-Utrilla, J.; Sanchez-Polo, M.; Gomez-Serrano, V.; Alvarez, P. M.; Alvim-Ferraz, M. C. M.; Dias, J. M. J. Hazard. Mater. 2011, 187, 1-23.
https://doi.org/10.1016/j.jhazmat.2011.01.033

[18]. Entezari, M. H.; Bastami, T. R. J. Hazard. Mater. 2006, 137, 959-964.
https://doi.org/10.1016/j.jhazmat.2006.03.019

[19]. Canizares, P.; Lobato, J.; Paz, R.; Rodrigo, M. A.; Saez, C. Water Res. 2005, 39, 2687-2703.
https://doi.org/10.1016/j.watres.2005.04.042

[20]. Shen, S. F.; Kentish, S. E.; Stevens, G. W. Sep. Purif. Technol. 2012, 95, 80-88.
https://doi.org/10.1016/j.seppur.2012.04.023

[21]. Praveen, P.; Loh, K. C. J. Membr. Sci. 2013, 437, 1-6.
https://doi.org/10.1016/j.memsci.2013.02.057

[22]. Peretti, S. W.; Tompkins C. J.; Goodall, J. L.; Michaels, A. S. J. Membr. Sci. 2002, 195, 193-202.
https://doi.org/10.1016/S0376-7388(01)00566-X

[23]. Yao, Y. X.; Li, H. B.; Liu, J. Y.; Tan, X. L; Yu, J. G.; Peng, Z. G. J. Nanomater. 2014, 1-9.

[24]. Zhang, B.; Li, F.; Wu, T.; Sun, D. J.; Li, Y. J. Colloid. Surf. A. 2015, 464, 78-88.
https://doi.org/10.1016/j.colsurfa.2014.10.020

[25]. Gimeno, O.; Carbajo, M.; Beltran, F. J.; Rivas, F. J. J. Hazard. Mater. 2005, 119, 99-108.
https://doi.org/10.1016/j.jhazmat.2004.11.024

[26]. Ksibi, M.; Zemzemi, A.; Boukchina, R. J. Photochem. Photobiol. A. 2003, 159, 61-70.
https://doi.org/10.1016/S1010-6030(03)00114-X

[27]. Erdem, M.; Yuksel, E.; Tay, T.; Cimen, Y.; Turk, H. J. Colloid. Interf. Sci. 2009, 333, 40-48.
https://doi.org/10.1016/j.jcis.2009.01.014

[28]. Koubaissy, B.; Joly, G.; Batonneau-Gener, I.; Magnoux, P. Ind. Eng. Chem. Res. 2011, 50, 5705-5713.
https://doi.org/10.1021/ie100420q

[29]. Huang, J. H.; Yan, C.; Huang, K. L J. Colloid. Interf. Sci. 2009, 332, 60-64.
https://doi.org/10.1016/j.jcis.2008.12.039

[30]. Lin, K. Y. A.; Yang, H.; Petit, C.; Hsu, F. H. Chem. Eng. J. 2014, 249, 293-301.
https://doi.org/10.1016/j.cej.2014.03.107

[31]. Stock, N.; Biswas, S. Morphol. Compos. Chem. Rev. 2011, 112, 933-969.

[32]. Janiak, C.; Vieth, J. K. New J. Chem. 2010, 34, 2366-2388.
https://doi.org/10.1039/c0nj00275e

[33]. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626-636.
https://doi.org/10.1039/B511962F

[34]. Yoon, J. W.; Jhung, S. H.; Hwang, Y. K.; Humphrey, S. M.; Wood, P. T.; Chang, J. S. Adv. Mater. 2007, 19, 1830-1834.
https://doi.org/10.1002/adma.200601983

[35]. Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255, 1791-1823.
https://doi.org/10.1016/j.ccr.2011.02.012

[36]. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477-1504.
https://doi.org/10.1039/b802426j

[37]. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450-1459.
https://doi.org/10.1039/b807080f

[38]. Corma, A.; García, H.; Xamena, F. X. Chem. Rev. 2010, 110, 4606-4655.
https://doi.org/10.1021/cr9003924

[39]. Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F. X. ACS. Catal. 2013, 3, 361-378.

[40]. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172-178.
https://doi.org/10.1038/nmat2608

[41]. Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642-3644.
https://doi.org/10.1039/b804126a

[42]. Ke, F.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 196, 36-43.
https://doi.org/10.1016/j.jhazmat.2011.08.069

[43]. Li, L.; Li, J. C.; Rao, Z.; Song, G. W.; Hu, B. Desalination. Water. Treat. 2014, 52, 7332-7338.
https://doi.org/10.1080/19443994.2013.821955

[44]. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553-8557.
https://doi.org/10.1016/j.tet.2008.06.036

[45]. Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2008, 105, 11623-11627.
https://doi.org/10.1073/pnas.0804900105

[46]. Nguyen, L. T.; Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. Appl. Catal. A. 2012, 425, 44-52.
https://doi.org/10.1016/j.apcata.2012.02.045

[47]. Rowsell, J. L.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304-1315.
https://doi.org/10.1021/ja056639q

[48]. Li, L.; Yao, J.; Xiao, P.; Shang, J.; Feng, Y.; Webley, P. A.; Wang, H. Colloid. Polym. Sci. 2013, 291, 2711-2717.
https://doi.org/10.1007/s00396-013-3024-8

[49]. Moellmer, J.; Celer, E. B.; Luebke, R.; Cairns, A. J.; Staudt, R.; Eddaoudi, M.; Thommes, M. Micropor. Mesoporr Mat. 2010, 129, 345-353
https://doi.org/10.1016/j.micromeso.2009.06.014

[50]. Barcia, P. S.; Guimarães, D.; Mendes, P. A. P.; Silva, J. A. C.; Guillerm, V.; Chevreau, H.; Serre, C.; Rodrigues, A. Micropor. Mesopor. Mat. 2011, 139, 67-73.
https://doi.org/10.1016/j.micromeso.2010.10.019

[51]. Francesc, X.; Xamena, F. X.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007, 250, 294-298.
https://doi.org/10.1016/j.jcat.2007.06.004

[52]. Hosny, M. N. J. Therm. Anal. Calorim. 2015, 122, 89-95.
https://doi.org/10.1007/s10973-015-4721-y

[53]. Cieplak, P.; Bayly, S. C. I.; Gould, I. R.; Merz, Jr. K. M.; Ferguson D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman. P. A. Am. Chem. Soc. 1995, 117, 5179-5197.

[54]. Thommes, M.; Cychosz, K. A.; Neimark, A. V. Advanced physical adsorption characterization of nanoporous carbons. In: Tascón, J. M. D. (ed.) Novels Carbons Adsorbent. Elsevier, Great Britain, 2012.
https://doi.org/10.1016/B978-0-08-097744-7.00004-1

[55]. Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is BET equation applicable to microporous adsorbents? In: P. Lewelling, F. Rodriguez-Reinoso, J. Rouquerol, N. Seaton, editors. Characterization of porous solids VII. Amsterdam: Elsevier, Stud. Surf. Sci. Catal., 2007.
https://doi.org/10.1016/S0167-2991(07)80008-5

[56]. Park, K. H.; Balathanigaimani, M. S.; Shim, W. G.; Lee, J. W.; Moon, H. Microporous. Mesoporous. Mater. 2010, 127, 1-8.
https://doi.org/10.1016/j.micromeso.2009.06.032

[57]. Chen, R; Yao, J.; Gu, Q.; Smeets, S.; Baerlocher, C.; Gu, H.; Zhu, D.; Morris, W.; Yaghi, O. M.; Wang, H. Chem. Commun. 2013, 49, 9500-9502.
https://doi.org/10.1039/c3cc44342f

[58]. Fairen-Jimenez, D.; Moggach, S. A.; Wharmby, M. T.; Wright, P. A.; Parsons, S.; Duren, T. J. Am. Chem. Soc. 2011, 133, 8900-8902.
https://doi.org/10.1021/ja202154j

[59]. Danaci, D.; Singh, R.; Xiao, P.; Webley, P. A. Chem. Eng. J. 2015, 280, 486-493.
https://doi.org/10.1016/j.cej.2015.04.090

[60]. Garrido, J.; Linares-Solano, A.; Martín Martínez, J. M.; Molina-Sabio, M.; Rodríguez-Reinoso, F.; Torregrosa, R. Langmuir 1987, 3, 76-81.

[61]. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.
https://doi.org/10.1021/ja01269a023

[62]. Landers, J.; Gor, G. Y.; Neimark, A. V. Colloids Surf., A: Physicochem. Eng. Aspects 2013, 437, 3-32.
https://doi.org/10.1016/j.colsurfa.2013.01.007

[63]. Dubinin, M. M.; Astakhov, V. A. Biol. Bull. Acad. Sci. USSR. 1971, 20, 3-7.
https://doi.org/10.1007/BF00849307

[64]. Li, G.; Lan, J.; Liu, J.; Jiang, G. J. Colloid Interface Sci. 2013, 405, 164-170.
https://doi.org/10.1016/j.jcis.2013.05.055

[65]. Bordiga, S.; Regli, L.; Bonino, F.; Groppo, E.; Lamberti, C.; Xiao, B.; Wheatley, P. S.; Morris, R. E.; Zecchina, A. Phys. Chem. Chem. Phys. 2007, 9, 2676-2685.
https://doi.org/10.1039/b703643d

[66]. Lin, K. S.; Adhikari, A. K.; Ku, C. N.; Chiang, C. L.; Kuo, H. Int. J. Hydrogen Energy 2012, 37, 13865-13871.
https://doi.org/10.1016/j.ijhydene.2012.04.105

[68]. Yue, Y.; Binder, A. J.; Song, R.; Cui, Y.; Chen, J.; Hensley, D. K.; Dai, S. Dalton Trans 2014, 43, 17893-17898.
https://doi.org/10.1039/C4DT02516D

[69]. Fracaroli, A. M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 8863-8866.
https://doi.org/10.1021/ja503296c

[70]. Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071-2073.
https://doi.org/10.1039/c0cc05002d

[71]. Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Colloids Surf., A: Physicochemical Eng. Aspects 2015, 465, 67-76.
https://doi.org/10.1016/j.colsurfa.2014.10.023

[72]. Diaz-Flores, P. E.; Lopez-Urı, F.; Terrones, M.; Rangel-Mendez, J. R. J. Colloid Interface Sci. 2009, 334, 124-131.
https://doi.org/10.1016/j.jcis.2009.02.045

[73]. Abdel-Ghani, N. T.; El-Chaghaby, G. A.; Helal, F. S. J. Adv. Res. 2015, 6, 405-415.
https://doi.org/10.1016/j.jare.2014.06.001

[74]. Ahmed, M. J.; Theydan, S. K. Ecotoxicol. Environ. Saf. 2012, 84, 39-45.
https://doi.org/10.1016/j.ecoenv.2012.06.019

[75]. Ahmed, M. J.; Theydan, S. K.; Mohammed, A. H. A. J. Engineering 2012, 18, 1-13.

[76]. Al-Mutairi, N. Z. Desalination 2010, 250, 892-901.
https://doi.org/10.1016/j.desal.2008.10.035

[77]. Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221-2295.
https://doi.org/10.1021/ja02268a002

[78]. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385-470.

[79]. Uddin, M. T.; Islam, M. S.; Abedin, M. Z. J. Eng. Appl. Sci. 2007, 2, 121-128.

[80]. Radke, C. J.; Prausnitz, J. M. Ind. Eng. Chem. Fund. 1972, 11, 445-451.
https://doi.org/10.1021/i160044a003

[81]. Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mater. 2007, 147, 401-411.
https://doi.org/10.1016/j.jhazmat.2007.01.023

[82]. Humpola, P., Odetti, H.; Moreno-Piraján, J. C.; Giraldo, L. Adsorption 2016, 22, 23-31.
https://doi.org/10.1007/s10450-015-9728-y

[83]. Duong, D. Do. In Adsorption Analysis: Equilibria and Kinetics. Practical Approaches of Pure Component Adsorption Equilibria. Imperial College Press, 1998.

[84]. Lagergren, S. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1-39.

[85]. Zeldowitsch, J. Acta Physicochim. U. R. S. S. 1934, 1 364-449.

[86]. Allen, J. A.; Scaife, P. H. Aust. J. Chem. 1966, 19, 2015-2023.
https://doi.org/10.1071/CH9662015c

[87]. Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. Microporous. Mesoporous. Mater. 2008, 111, 276-284.
https://doi.org/10.1016/j.micromeso.2007.08.002

[88]. Weber, W. J.; Morris, J. C. ASCE J. Sanit. Eng. Div. 1963, 89, 31-42.

[89]. McKay, G.; Poots, V. J. P. J. Chem. Technol. Biotechnol. 1980, 30, 279-292.
https://doi.org/10.1002/jctb.503300134

[90]. Crank, J. Oxford Clarendon 1965, 84, 84-88.

[91]. Asfour, H. M.; Nassar, M. M.; Fadali, O. A.; El‐Geundi, M. S. J. Chem. Technol. Biotechnol. 1985, 35, 28-35.
https://doi.org/10.1002/jctb.5040350106

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).