

Design, synthesis and characterization of MOF-199 and ZIF-8: Applications in the adsorption of phenols derivatives in aqueous solution
Liliana Giraldo (1)




(1) Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 11001000, Colombia
(2) Facultad de Ingeniería, Grupo DestaCar, Universidad de la Guajira, Guajira, 440001, Colombia
(3) Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
(4) Facultad de Ciencias, Grupo de Investigación en Sólidos Porosos y Calorimetría, Universidad de los Andes, Bogotá, 11001000, Colombia
(*) Corresponding Author
Received: 28 Jun 2017 | Revised: 18 Aug 2017 | Accepted: 05 Aug 2017 | Published: 30 Sep 2017 | Issue Date: September 2017
Abstract
In this work, the adsorption characteristics of metal-organic frameworks (MOFs: MOF-199 and ZIF-8) with two different types of structure were analyzed. MOF-199 consists of copper-based metal clusters while the ZIF-8 consists of organic molecules interlaced with zinc atoms and these have octahedral morphology and typical rhombic dodecahedron shape, respectively. The results of phenol (Ph) and p-nitro phenol (PNP) adsorption capacity from aqueous solution show that MOF-199 has a higher adsorption capacity: Ph 79.55% and PNP 89.3%, while for ZIF-8 the adsorption capacity was Ph 65.5% and PNP 77.0%. Adsorption of phenols was fit to Langmuir, Sips and Redlich-Peterson models and kinetics by pseudo-second order. Gibbs free energy (ΔG°) shows that adsorption processes studied are spontaneous.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between July 1, 2022 and August 15, 2022 (Voucher code: SINGLE2022).
2. Young writers will not be charged for the article processing fee between July 1, 2022 and August 15, 2022 (Voucher code: YOUNG2022).
3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between July 1, 2022 and August 15, 2022 (Voucher code: PhD2022).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.8.3.293-304.1603
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Grant Basic Sciences by the University of the Andes through the Faculty of Science and the Vice-rectory of Research; and the Bank of the Republic of Colombia for their funding and the Convention 3580.
Citations
[1]. Huixia Miao, Shuya Song, Hao Chen, Wenhua Zhang, Runping Han, Guang Yang
Adsorption study of p-nitrophenol on a silver(I) triazolate MOF
Journal of Porous Materials 27(5), 1409, 2020
DOI: 10.1007/s10934-020-00917-w

[2]. Barbara Muir, Maciej Sobczyk, Tomasz Bajda
Fundamental features of mesoporous functional materials influencing the efficiency of removal of VOCs from aqueous systems: A review
Science of The Total Environment 784, 147121, 2021
DOI: 10.1016/j.scitotenv.2021.147121

[3]. Zakariyya Uba Zango, Nonni Soraya Sambudi, Khairulazhar Jumbri, Anita Ramli, Noor Hana Hanif Abu Bakar, Bahruddin Saad, Muhammad Nur’ Hafiz Rozaini, Hamza Ahmad Isiyaka, Abubaker Mohammed Osman, Abdelmoneim Sulieman
An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater
Water 12(10), 2921, 2020
DOI: 10.3390/w12102921

[4]. Eldho Elias, C. Sarathchandran, Saju Joseph, Ajesh K. Zachariah, Jince Thomas, Dineep Devadasan, Fernando G. Souza, Sabu Thomas
Photoassisted degradation of rhodamine B using poly( ε ‐caprolactone) based nanocomposites: Mechanistic and kinetic features
Journal of Applied Polymer Science 138(26), 50612, 2021
DOI: 10.1002/app.50612

[5]. Zakariyya Uba Zango, Khairulazhar Jumbri, Nonni Soraya Sambudi, Anita Ramli, Noor Hana Hanif Abu Bakar, Bahruddin Saad, Muhammad Nur’ Hafiz Rozaini, Hamza Ahmad Isiyaka, Ahmad Hussaini Jagaba, Osamah Aldaghri, Abdelmoneim Sulieman
A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater
Polymers 12(11), 2648, 2020
DOI: 10.3390/polym12112648

References
[1]. Shen, H. M.; Zhua, G. Y.; Yua, W. B.; Wua, H. K.; Jib, H. B.; Shia, H. X. Shea, Y. B.; Zheng, Y. F. Appl. Surf. Sci. 2015, 356, 1155-1167.
https://doi.org/10.1016/j.apsusc.2015.08.203
[2]. Arasteh, R.; Masoumi, M.; Rashidi, A. M.; Moradi, L.; Samimi, V.; Mostafavi, S. T. Appl. Surf. Sci. 2010, 256, 4447-4455.
https://doi.org/10.1016/j.apsusc.2010.01.057
[3]. Liu, W.; Jiang, X. Y.; Chen, X. Q. Appl. Surf. Sci. 2014, 320, 764-771.
https://doi.org/10.1016/j.apsusc.2014.09.165
[4]. Ofomaja, A. E. Unuabonah, E. I. Carbohyd. Polym. 2011, 83, 1192-1200.
https://doi.org/10.1016/j.carbpol.2010.09.023
[5]. Cotoruelo, L. M.; Marques, M. D.; Diaz, F. J.; Rodriguez-Mirasol, J.; Rodriguez, J. J.; Cordero, T. Chem. Eng. J. 2012, 184, 176-183.
https://doi.org/10.1016/j.cej.2012.01.026
[6]. Sarkar, B.; Xi, Y. F.; Megharaj, M.; Krishnamurti, G. S. R.; Naidu, R. J. Colloid. Interf. Sci. 2010, 350, 295-304.
https://doi.org/10.1016/j.jcis.2010.06.030
[7]. Han, S.; Zhao, F.; Sun, J.; Wang, B.; Wei, R. Y.; Yan, S. Q. J. Magn. Magn. Mater. 2013, 341, 133-137.
https://doi.org/10.1016/j.jmmm.2013.04.018
[8]. Isichei, T. O.; Okieimen, F. E. Environ. Pollut. 2014, 3, 99-111.
[9]. Ahmad, F.; Daud, W. M. A. W.; Ahmad, M. A.; Radzi, R. Chem. Eng. J. 2011, 178, 461-467.
https://doi.org/10.1016/j.cej.2011.10.044
[10]. Xue, G. H.; Gao, M. L.; Gu, Z.; Luo, Z. X.; Hu, Z. C. Chem. Eng. J. 2013, 218, 223-231.
https://doi.org/10.1016/j.cej.2012.12.045
[11]. Sarkar, B.; Megharaj, M.; Xi, Y. F.; Naidu, R. Chem. Eng. J. 2012, 185, 35-43.
https://doi.org/10.1016/j.cej.2011.05.062
[12]. Sun, Y. Y.; Zhou, J. B.; Cai, W. Q.; Zhao, R. S.; Yuan, J. P. Appl. Surf. Sci. 2015, 345, 897-903.
https://doi.org/10.1016/j.apsusc.2015.05.041
[13]. Liu, B. J.; Yang, F.; Zou, Y. X.; Peng, Y. J. Chem. Eng. Data. 2014, 59, 1476-1482.
https://doi.org/10.1021/je4010239
[14]. Adam, O. E. A. A.; Al-Dujaili, A. H. J. Chem. 2013, 1-8.
https://doi.org/10.1155/2013/694029
[15]. Park, Y.; Ayoko, G. A.; Kurdi, R.; Horvath, E.; Kristof, J.; Frost, R. L. J. Colloid. Interf. Sci. 2013, 406, 196-208.
https://doi.org/10.1016/j.jcis.2013.05.027
[16]. Bastami, T. R.; Entezari, M. H.; Chem. Eng. J. 2012, 210, 510-519.
https://doi.org/10.1016/j.cej.2012.08.011
[17]. Rivera-Utrilla, J.; Sanchez-Polo, M.; Gomez-Serrano, V.; Alvarez, P. M.; Alvim-Ferraz, M. C. M.; Dias, J. M. J. Hazard. Mater. 2011, 187, 1-23.
https://doi.org/10.1016/j.jhazmat.2011.01.033
[18]. Entezari, M. H.; Bastami, T. R. J. Hazard. Mater. 2006, 137, 959-964.
https://doi.org/10.1016/j.jhazmat.2006.03.019
[19]. Canizares, P.; Lobato, J.; Paz, R.; Rodrigo, M. A.; Saez, C. Water Res. 2005, 39, 2687-2703.
https://doi.org/10.1016/j.watres.2005.04.042
[20]. Shen, S. F.; Kentish, S. E.; Stevens, G. W. Sep. Purif. Technol. 2012, 95, 80-88.
https://doi.org/10.1016/j.seppur.2012.04.023
[21]. Praveen, P.; Loh, K. C. J. Membr. Sci. 2013, 437, 1-6.
https://doi.org/10.1016/j.memsci.2013.02.057
[22]. Peretti, S. W.; Tompkins C. J.; Goodall, J. L.; Michaels, A. S. J. Membr. Sci. 2002, 195, 193-202.
https://doi.org/10.1016/S0376-7388(01)00566-X
[23]. Yao, Y. X.; Li, H. B.; Liu, J. Y.; Tan, X. L; Yu, J. G.; Peng, Z. G. J. Nanomater. 2014, 1-9.
[24]. Zhang, B.; Li, F.; Wu, T.; Sun, D. J.; Li, Y. J. Colloid. Surf. A. 2015, 464, 78-88.
https://doi.org/10.1016/j.colsurfa.2014.10.020
[25]. Gimeno, O.; Carbajo, M.; Beltran, F. J.; Rivas, F. J. J. Hazard. Mater. 2005, 119, 99-108.
https://doi.org/10.1016/j.jhazmat.2004.11.024
[26]. Ksibi, M.; Zemzemi, A.; Boukchina, R. J. Photochem. Photobiol. A. 2003, 159, 61-70.
https://doi.org/10.1016/S1010-6030(03)00114-X
[27]. Erdem, M.; Yuksel, E.; Tay, T.; Cimen, Y.; Turk, H. J. Colloid. Interf. Sci. 2009, 333, 40-48.
https://doi.org/10.1016/j.jcis.2009.01.014
[28]. Koubaissy, B.; Joly, G.; Batonneau-Gener, I.; Magnoux, P. Ind. Eng. Chem. Res. 2011, 50, 5705-5713.
https://doi.org/10.1021/ie100420q
[29]. Huang, J. H.; Yan, C.; Huang, K. L J. Colloid. Interf. Sci. 2009, 332, 60-64.
https://doi.org/10.1016/j.jcis.2008.12.039
[30]. Lin, K. Y. A.; Yang, H.; Petit, C.; Hsu, F. H. Chem. Eng. J. 2014, 249, 293-301.
https://doi.org/10.1016/j.cej.2014.03.107
[31]. Stock, N.; Biswas, S. Morphol. Compos. Chem. Rev. 2011, 112, 933-969.
[32]. Janiak, C.; Vieth, J. K. New J. Chem. 2010, 34, 2366-2388.
https://doi.org/10.1039/c0nj00275e
[33]. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626-636.
https://doi.org/10.1039/B511962F
[34]. Yoon, J. W.; Jhung, S. H.; Hwang, Y. K.; Humphrey, S. M.; Wood, P. T.; Chang, J. S. Adv. Mater. 2007, 19, 1830-1834.
https://doi.org/10.1002/adma.200601983
[35]. Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255, 1791-1823.
https://doi.org/10.1016/j.ccr.2011.02.012
[36]. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477-1504.
https://doi.org/10.1039/b802426j
[37]. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450-1459.
https://doi.org/10.1039/b807080f
[38]. Corma, A.; García, H.; Xamena, F. X. Chem. Rev. 2010, 110, 4606-4655.
https://doi.org/10.1021/cr9003924
[39]. Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F. X. ACS. Catal. 2013, 3, 361-378.
[40]. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172-178.
https://doi.org/10.1038/nmat2608
[41]. Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642-3644.
https://doi.org/10.1039/b804126a
[42]. Ke, F.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 196, 36-43.
https://doi.org/10.1016/j.jhazmat.2011.08.069
[43]. Li, L.; Li, J. C.; Rao, Z.; Song, G. W.; Hu, B. Desalination. Water. Treat. 2014, 52, 7332-7338.
https://doi.org/10.1080/19443994.2013.821955
[44]. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553-8557.
https://doi.org/10.1016/j.tet.2008.06.036
[45]. Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2008, 105, 11623-11627.
https://doi.org/10.1073/pnas.0804900105
[46]. Nguyen, L. T.; Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. Appl. Catal. A. 2012, 425, 44-52.
https://doi.org/10.1016/j.apcata.2012.02.045
[47]. Rowsell, J. L.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304-1315.
https://doi.org/10.1021/ja056639q
[48]. Li, L.; Yao, J.; Xiao, P.; Shang, J.; Feng, Y.; Webley, P. A.; Wang, H. Colloid. Polym. Sci. 2013, 291, 2711-2717.
https://doi.org/10.1007/s00396-013-3024-8
[49]. Moellmer, J.; Celer, E. B.; Luebke, R.; Cairns, A. J.; Staudt, R.; Eddaoudi, M.; Thommes, M. Micropor. Mesoporr Mat. 2010, 129, 345-353
https://doi.org/10.1016/j.micromeso.2009.06.014
[50]. Barcia, P. S.; Guimarães, D.; Mendes, P. A. P.; Silva, J. A. C.; Guillerm, V.; Chevreau, H.; Serre, C.; Rodrigues, A. Micropor. Mesopor. Mat. 2011, 139, 67-73.
https://doi.org/10.1016/j.micromeso.2010.10.019
[51]. Francesc, X.; Xamena, F. X.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007, 250, 294-298.
https://doi.org/10.1016/j.jcat.2007.06.004
[52]. Hosny, M. N. J. Therm. Anal. Calorim. 2015, 122, 89-95.
https://doi.org/10.1007/s10973-015-4721-y
[53]. Cieplak, P.; Bayly, S. C. I.; Gould, I. R.; Merz, Jr. K. M.; Ferguson D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman. P. A. Am. Chem. Soc. 1995, 117, 5179-5197.
[54]. Thommes, M.; Cychosz, K. A.; Neimark, A. V. Advanced physical adsorption characterization of nanoporous carbons. In: Tascón, J. M. D. (ed.) Novels Carbons Adsorbent. Elsevier, Great Britain, 2012.
https://doi.org/10.1016/B978-0-08-097744-7.00004-1
[55]. Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is BET equation applicable to microporous adsorbents? In: P. Lewelling, F. Rodriguez-Reinoso, J. Rouquerol, N. Seaton, editors. Characterization of porous solids VII. Amsterdam: Elsevier, Stud. Surf. Sci. Catal., 2007.
https://doi.org/10.1016/S0167-2991(07)80008-5
[56]. Park, K. H.; Balathanigaimani, M. S.; Shim, W. G.; Lee, J. W.; Moon, H. Microporous. Mesoporous. Mater. 2010, 127, 1-8.
https://doi.org/10.1016/j.micromeso.2009.06.032
[57]. Chen, R; Yao, J.; Gu, Q.; Smeets, S.; Baerlocher, C.; Gu, H.; Zhu, D.; Morris, W.; Yaghi, O. M.; Wang, H. Chem. Commun. 2013, 49, 9500-9502.
https://doi.org/10.1039/c3cc44342f
[58]. Fairen-Jimenez, D.; Moggach, S. A.; Wharmby, M. T.; Wright, P. A.; Parsons, S.; Duren, T. J. Am. Chem. Soc. 2011, 133, 8900-8902.
https://doi.org/10.1021/ja202154j
[59]. Danaci, D.; Singh, R.; Xiao, P.; Webley, P. A. Chem. Eng. J. 2015, 280, 486-493.
https://doi.org/10.1016/j.cej.2015.04.090
[60]. Garrido, J.; Linares-Solano, A.; Martín Martínez, J. M.; Molina-Sabio, M.; Rodríguez-Reinoso, F.; Torregrosa, R. Langmuir 1987, 3, 76-81.
[61]. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[62]. Landers, J.; Gor, G. Y.; Neimark, A. V. Colloids Surf., A: Physicochem. Eng. Aspects 2013, 437, 3-32.
https://doi.org/10.1016/j.colsurfa.2013.01.007
[63]. Dubinin, M. M.; Astakhov, V. A. Biol. Bull. Acad. Sci. USSR. 1971, 20, 3-7.
https://doi.org/10.1007/BF00849307
[64]. Li, G.; Lan, J.; Liu, J.; Jiang, G. J. Colloid Interface Sci. 2013, 405, 164-170.
https://doi.org/10.1016/j.jcis.2013.05.055
[65]. Bordiga, S.; Regli, L.; Bonino, F.; Groppo, E.; Lamberti, C.; Xiao, B.; Wheatley, P. S.; Morris, R. E.; Zecchina, A. Phys. Chem. Chem. Phys. 2007, 9, 2676-2685.
https://doi.org/10.1039/b703643d
[66]. Lin, K. S.; Adhikari, A. K.; Ku, C. N.; Chiang, C. L.; Kuo, H. Int. J. Hydrogen Energy 2012, 37, 13865-13871.
https://doi.org/10.1016/j.ijhydene.2012.04.105
[68]. Yue, Y.; Binder, A. J.; Song, R.; Cui, Y.; Chen, J.; Hensley, D. K.; Dai, S. Dalton Trans 2014, 43, 17893-17898.
https://doi.org/10.1039/C4DT02516D
[69]. Fracaroli, A. M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 8863-8866.
https://doi.org/10.1021/ja503296c
[70]. Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071-2073.
https://doi.org/10.1039/c0cc05002d
[71]. Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Colloids Surf., A: Physicochemical Eng. Aspects 2015, 465, 67-76.
https://doi.org/10.1016/j.colsurfa.2014.10.023
[72]. Diaz-Flores, P. E.; Lopez-Urı, F.; Terrones, M.; Rangel-Mendez, J. R. J. Colloid Interface Sci. 2009, 334, 124-131.
https://doi.org/10.1016/j.jcis.2009.02.045
[73]. Abdel-Ghani, N. T.; El-Chaghaby, G. A.; Helal, F. S. J. Adv. Res. 2015, 6, 405-415.
https://doi.org/10.1016/j.jare.2014.06.001
[74]. Ahmed, M. J.; Theydan, S. K. Ecotoxicol. Environ. Saf. 2012, 84, 39-45.
https://doi.org/10.1016/j.ecoenv.2012.06.019
[75]. Ahmed, M. J.; Theydan, S. K.; Mohammed, A. H. A. J. Engineering 2012, 18, 1-13.
[76]. Al-Mutairi, N. Z. Desalination 2010, 250, 892-901.
https://doi.org/10.1016/j.desal.2008.10.035
[77]. Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221-2295.
https://doi.org/10.1021/ja02268a002
[78]. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385-470.
[79]. Uddin, M. T.; Islam, M. S.; Abedin, M. Z. J. Eng. Appl. Sci. 2007, 2, 121-128.
[80]. Radke, C. J.; Prausnitz, J. M. Ind. Eng. Chem. Fund. 1972, 11, 445-451.
https://doi.org/10.1021/i160044a003
[81]. Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mater. 2007, 147, 401-411.
https://doi.org/10.1016/j.jhazmat.2007.01.023
[82]. Humpola, P., Odetti, H.; Moreno-Piraján, J. C.; Giraldo, L. Adsorption 2016, 22, 23-31.
https://doi.org/10.1007/s10450-015-9728-y
[83]. Duong, D. Do. In Adsorption Analysis: Equilibria and Kinetics. Practical Approaches of Pure Component Adsorption Equilibria. Imperial College Press, 1998.
[84]. Lagergren, S. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1-39.
[85]. Zeldowitsch, J. Acta Physicochim. U. R. S. S. 1934, 1 364-449.
[86]. Allen, J. A.; Scaife, P. H. Aust. J. Chem. 1966, 19, 2015-2023.
https://doi.org/10.1071/CH9662015c
[87]. Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. Microporous. Mesoporous. Mater. 2008, 111, 276-284.
https://doi.org/10.1016/j.micromeso.2007.08.002
[88]. Weber, W. J.; Morris, J. C. ASCE J. Sanit. Eng. Div. 1963, 89, 31-42.
[89]. McKay, G.; Poots, V. J. P. J. Chem. Technol. Biotechnol. 1980, 30, 279-292.
https://doi.org/10.1002/jctb.503300134
[90]. Crank, J. Oxford Clarendon 1965, 84, 84-88.
[91]. Asfour, H. M.; Nassar, M. M.; Fadali, O. A.; El‐Geundi, M. S. J. Chem. Technol. Biotechnol. 1985, 35, 28-35.
https://doi.org/10.1002/jctb.5040350106
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.8.3.293-304.1603


















European Journal of Chemistry 2017, 8(3), 293-304 | doi: https://doi.org/10.5155/eurjchem.8.3.293-304.1603 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2022 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.