European Journal of Chemistry 2021, 12(1), 1-12 | doi: https://doi.org/10.5155/eurjchem.12.1.1-12.2031 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide


Muhammad Jamaluddin Ahmed (1,*) orcid , Ayesha Afrin (2) orcid , Muhammad Emdadul Haque (3) orcid

(1) Laboratory of Analytical Chemistry, Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
(2) Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
(3) Laboratory of Analytical Chemistry, Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
(*) Corresponding Author

Received: 19 Aug 2020 | Revised: 14 Nov 2020 | Accepted: 20 Dec 2020 | Published: 31 Mar 2021 | Issue Date: March 2021

Abstract


A new spectrofluorimetric reagent N-(pyridin-2-yl)-quinoline-2-carbothioamide (PQTA) has been synthesized and characterized. A very simple, ultra-sensitive, and highly selective, and non-extractive new spectrofluorimetric method for the determination of molybdenum at pico-trace levels using PQTA has been developed. This novel fluorimetric reagent PQTA, becomes oxidized in a slightly acidic (0.0025-0.05 M H2SO4) solution with molybdenum (VI) in absolute ethanol to produce a highly fluorescent oxidized product (λex = 300 nm; λem= 377 nm). Constant and maximum fluorescence intensities were observed over a wide range of acidity (0.0025-0.0500 M H2SO4) for the period between 2 min and 24 h. Linear calibration graphs were obtained for 0.001-600 μg/L of Mo having a detection limit of 0.15 ng/L; the quantification limit of the reaction system was found to be 1.5 ng/L and the RSD was 0-2%. A large excess of over 60 cations, anions, and complexing agents like chloride, phosphate, azide, tartrate, oxalate, and SCN- etc. do not interfere in the determination. The developed method was successfully used in the determination of molybdenum in several Certified Reference Materials (Alloys, steel, serum, bovine liver, drinking water, soil, and sediments) as well as in some environmental waters (Potable and polluted), biological fluids (Human blood, urine, hair, and milk), soil samples and food samples (Vegetables, rice, and wheat) solutions containing both molybdenum (VI) and molybdenum (V) ions. The results of the proposed method for assessing biological, food and vegetable samples were comparable with ICP-OES and AAS were found to be in excellent agreement.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Food samples; Biological samples; Spectrofluorimetry; Environmental samples; Molybdenum determination; N-(Pyridin-2-yl)-quinoline-2-carbothioamide

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.1.1-12.2031

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 968 times | icon graph PDF Article downloaded 335 times


Citations

/


[1]. Mohammed Jamaluddin Ahmed, Muhammad Lajin Mia
A new simple, highly sensitive and selective spectrofluorimetric method for the speciation of thallium at pico-trace levels in various complex matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide
RSC Advances  11(51), 32312, 2021
DOI: 10.1039/D1RA05388D
/


[2]. Muhammad Jamaluddin Ahmed, Muhammad Jihan Uddin, Muhammad Emdadul Hoque
Development of a new highly sensitive and selective spectrophotometric method for the determination of selenium at nano-trace levels in various complex matrices using salicylaldehyde-orthoaminophenol
European Journal of Chemistry  12(4), 469, 2021
DOI: 10.5155/eurjchem.12.4.469-481.2137
/


References


[1]. Hurliy, L. S.; Bratter, P.; Schramel, P. Trace Element Analytical Chemistry in Medicine and Biology, 6th edition, John Wiley & Sons, 1994.

[2]. Institute of Medicine, Molybdenum, In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: The National Academies Press, 2000.

[3]. Coughlan, M. P. J. Inherit. Metab. Dis. 1983, 6 (S1), 70-77.
https://doi.org/10.1007/BF01811327

[4]. Burgmayer, S. J. N.; Stiefel, E. I. J. Chem. Educ. 1985, 62 (11), 943-953.
https://doi.org/10.1021/ed062p943

[5]. Considine, S.; Glenn, D., Molybdenum, Van Nostrand's Encyclopedia of Chemistry. New York, Wiley-Interscience, 2005.

[6]. Sebenik, R. F.; Burkin, A. R.; Dorfler, R. R.; Laferty, J. M.; Leichtfried, G.; Meyer-Grünow, H.; Mitchell, P. C. H.; Vukasovich, M. S.; Church, D. A.; Van Riper, G. G.; Gilliland, J. C.; Thielke, S. A. Molybdenum and Molybdenum Compounds. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
https://doi.org/10.1002/14356007.a16_655

[7]. Lal, S.; Patil, R. S. Environ. Monit. Assess. 2001, 68 (1), 37-50.
https://doi.org/10.1023/A:1010730821844

[8]. Shpak, A. P.; Kotrechko, S. O.; Mazilova, T. I.; Mikhailovskij, I. M. Sci. Technol. Adv. Mater. 2009, 10 (4), 045004.
https://doi.org/10.1088/1468-6996/10/4/045004

[9]. Ahmed, M. J.; Haque, M. E. Anal. Sci. 2002, 18 (4), 433-439.
https://doi.org/10.2116/analsci.18.433

[10]. Sun, Y. Talanta 2000, 52 (3), 417-424.
https://doi.org/10.1016/S0039-9140(00)00391-X

[11]. Kalal, H. S.; Panahi, H. A.; Framarzi, N.; Moniri, E.; Naeemy, A.; Hoveidi, H.; Abhari, A. Int. J. Environ. Sci. Technol. 2011, 8 (3), 501-512.
https://doi.org/10.1007/BF03326236

[12]. Reid, H.; Bashammakh, A.; Goodall, P.; Landon, M.; Oconnor, C.; Sharp, B. Talanta 2007, 2008, 75 (1) 189-197.

[13]. Yu, J. C.; Chan, S. M.; Chen, Z. Anal. Bioanal. Chem. 2003, 376 (5), 728-734.

[14]. Gil, R. A.; Pasini-Cabello, S.; Takara, A.; Smichowski, P.; Olsina, R. A.; Martinez, L. D. Microchem. J. 2007, 86 (2), 156-160.
https://doi.org/10.1016/j.microc.2007.02.001

[15]. Burba, P.; Willmer, P. G. Z. Anal. Chem. 1986, 324 (3-4), 298-299.
https://doi.org/10.1007/BF00487941

[16]. Ohashi, H.; Uehara, N.; Shijo, Y. J. Chromatog. A 1991, 539 (1), 225-231.
https://doi.org/10.1016/S0021-9673(01)95379-8

[17]. Yigmatepe, E.; Yaman, M. Monatsh Chem. 2011, 142 (2), 131-136.
https://doi.org/10.1007/s00706-010-0442-x

[18]. Sanchez, M. Talanta 1991, 38 (7), 747-752.
https://doi.org/10.1016/0039-9140(91)80195-6

[19]. Jiang, C.; Wang, J.; He, F. Anal. Chim. Acta 2001, 439 (2), 307-313.
https://doi.org/10.1016/S0003-2670(01)00848-0

[20]. Capitan, F.; Sanchez-Palencia, G.; Navalon, A.; Fermin Capitan-Vallvey, L.; Luis Vilchez, J. Anal. Chim. Acta 1992, 259 (2), 345-353.
https://doi.org/10.1016/0003-2670(92)85386-K

[21]. Pyrzynska, K. Anal. Chim. Acta 2007, 590 (1), 40-48.
https://doi.org/10.1016/j.aca.2007.03.013

[22]. Cruces Blanco, C.; Garcia Campana, A.; Ales Barrero, F.; Roman Ceba, M. Anal. Chim. Acta 1993, 283 (1), 213-223.
https://doi.org/10.1016/0003-2670(93)85225-9

[23]. Bian, W. W. Appl. Mech. Mater. 2014, 556-562, 584-587.
https://doi.org/10.4028/www.scientific.net/AMM.556-562.584

[24]. Kawakubo, S.; Suzuki, H.; Iwatsuki, M. Anal. Sci. 1996, 12 (5), 767-771.
https://doi.org/10.2116/analsci.12.767

[25]. Vilchez, J. L.; Sanchez-Palencia, G.; Blanc, R.; Avidad, R.; Navalon, A. Anal. Lett. 1994, 27 (12), 2355-2368.
https://doi.org/10.1080/00032719408005988

[26]. Salinas, F.; de la Peña, A. M.; Capitan-Vallvey, L. F.; Navalon, A. Analyst 1989, 114 (10), 1297-1301.
https://doi.org/10.1039/AN9891401297

[27]. Haddad, P. R.; Alexander, P. W.; Smythe, L. E. Talanta 1975, 22 (1), 61-69.
https://doi.org/10.1016/0039-9140(75)80141-X

[28]. Jie, Z.; Sixuan, G.; Zaizheng, Z.; Bin, W.; Zhenghong, Z. Chinese J. Anal. Lab. 1998, 17 (1), 73-75.

[29]. Mori I.; Fujita Y.; Kamata Y.; Enoki T. Bunseki Kagaku 1978, 27 (5), 259-263.
https://doi.org/10.2116/bunsekikagaku.27.5_259

[30]. Xie, Y.; Yan, X.; Tong, H.; Liu, S. Asian J. Chem. 2007, 19 (2), 1017-1022.

[31]. Campana, A. M. G.; Barrero, F. A.; Ceba, M. R.; Gutierrez, A. F. Analyst 1994, 119 (8), 1903-1906.
https://doi.org/10.1039/AN9941901903

[32]. Blanco, C. Talanta 1995, 42 (8), 1037-1044.
https://doi.org/10.1016/0039-9140(95)01506-7

[33]. Chin, Y.-W.; Chai, H.-B.; Keller, W. J.; Kinghorn, A. D. J. Agric. Food Chem. 2008, 56 (17), 7759-7764.
https://doi.org/10.1021/jf801792n

[34]. Shaofei, S.; Ping, L.; Ful, Z. J. Hangzhou Normal Univ. Natural Sci. Edit. 2015, 2, 178-182.

[35]. Song, G, S.; Guo, Y.; Ren, H. Chinese J. Anal. Lab. 2005, 5, 44-47.

[36]. Tabaraki, R.; Abdi, O.; Yousefipour, S. J. Fluoresc. 2016, 27 (2), 651-657.
https://doi.org/10.1007/s10895-016-1994-x

[37]. Pal, B.; Singh, K.; Dutta, K. Talanta 1992, 39 (8), 971-975.
https://doi.org/10.1016/0039-9140(92)80280-Q

[38]. Feng, G.; Mi, H.; Fei, Q.; Shan, H.; Wang, B.; Xu, H.; Li, G.; Chen, F.; Huan, Y. Spectrochim. Acta A 2016, 167, 122-126.
https://doi.org/10.1016/j.saa.2016.05.039

[39]. Kirkbright, G. F.; West, T. S.; Woodward, C. Talanta 1966, 13 (12), 1637-1644.
https://doi.org/10.1016/0039-9140(66)80246-1

[40]. Guoquan, G.; Liufang, W.; Mingming, L. Chinese J. Anal. Chem. 1993, 21 (5), 563-565.

[41]. Wang, X.; Jiang, M.; Bai, Z.; Yan, F. Metallurg. Anal. (China) 1989, 9 (5), 27-29.

[42]. Bao, S. Y.; Li, S. C.; Wang, G. H.; Hu, H. F. J. Hebei Univ. (Natural Sci. Ed.) 2001, 21 (1), 61-64.

[43]. Maosheng, G.; Ji, L.; Jinduan, Z.; Zhongyi, Z.; Fupeng, W.; He, Y. Chinese J. Anal. Lab. 1990, 12 (5), 305-307.

[44]. Quanlin, Z.; Shaoyi, G. Chinese J. Spect. Lab. 1997, 14 (4), 88-93.

[45]. Hong-Yan, M. A.; Yun, W. Chinese J. Spect. Lab. 2000, 17 (1), 100-103.

[46]. Guien, Z.; Hong, C.; Suling, F. Chinese J. Anal. Lab. 1996, 24 (5), 539-542.

[47]. Guilan, S.; Yuting, L.; Zhe, X.; Xufeng, G.; Zengyu, Y. J. Shandong Inst. Build. Mater. 1997, 11 (4), 326-329.

[48]. Chongqiu, J.; Fengyan, Z. Chinese J. Anal. Lab. 1994, 22 (10), 1016-1018.

[49]. Hongyan, M. A.; Guang-Cai, Q. I. Metallurg. Anal. (China) 2001, 21 (4), 16-17.

[50]. Li-Hong, W.; Hui, Z.; Qiang, L.; Shu-Cun, L. Phys. Testing Chem. Anal. (Part B: Chem. Anal.) 2009, 9, 1072-1074.

[51]. Shan-Bao, Q.; Qing-Dong, W.; Chang-Mei, J. Phys. Testing Chem. Anal. (Part B: Chem. Anal.) 2009, 9, 1051-1055.

[52]. Xiao-Min, W.; Shen, C.; Jiao-Mai, P. Chem. J. Chinese Univ. 1991, 12 (9), 1181-1182.

[53]. Porter, H. D. J. Am. Chem. Soc. 1954, 76 (1), 127-128.
https://doi.org/10.1021/ja01630a035

[54]. Pal, B. K.; Chakrabarti, A. K.; Ahmed, Md. J. Anal. Chim. Acta 1988, 206, 351-355.
https://doi.org/10.1016/S0003-2670(00)80856-9

[55]. Ahmed, M. J.; Islam, M. T.; Hossain, F. RSC Adv. 2018, 8 (10), 5509-5522.
https://doi.org/10.1039/C7RA12762F

[56]. Ahmed, M. J.; Afrin, A.; Rashid, M. Am. J. Anal. Chem. 2019, 10 (08), 316-347.
https://doi.org/10.4236/ajac.2019.108023

[57]. Ahmed, M. J.; Islam, M. T.; Farhana, F. RSC Adv. 2019, 9 (44), 25609-25626.
https://doi.org/10.1039/C9RA02850A

[58]. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C., Vogel's Textbook of Quantitative Chemical Analysis, ELBS of 5th edition, John Wiley Sons Inc., 1989.

[59]. Parker, G. A. Analytical Chemistry of Molybdenum; Springer Berlin Heidelberg, 1983.
https://doi.org/10.1007/978-3-642-68992-5

[60]. Mukherji, A. K. Aqueous Solutions of Zirconium and Hafnium. In Analytical Chemistry of Zirconium and Hafnium; Elsevier, 1970; pp 1-11.
https://doi.org/10.1016/B978-0-08-006886-2.50006-0

[61]. Pal, B. K.; Choudhury, B. Mikrochim. Acta 1984, 83 (1-2), 121-131.
https://doi.org/10.1007/BF01237266

[62]. Ojeda, C. B.; de Torres, A. G.; Rojas, F. S.; Pavon, J. M. C. Analyst 1987, 112 (11), 1499-1501.
https://doi.org/10.1039/AN9871201499

[63]. Ahmed, M. J.; Afrin, A.; Akhtar, Y. Am. J. Anal. Chem. 2019, 10 (11), 528-561.
https://doi.org/10.4236/ajac.2019.1011038

[64]. Ahmed, M. J.; Stalikas, C. D.; Veltsistas, P. G.; Tzouwara-Karayanni, S. M.; Karayannis, M. I. Analyst 1997, 122 (3), 221-226.
https://doi.org/10.1039/a606357h

[65]. Pal, B. K.; Ahmed, Md. J. U.; Chakrabarti, A. K. Analyst 1990, 115 (4), 439-443.
https://doi.org/10.1039/AN9901500439

[66]. Sample Preparation Techniques in Analytical Chemistry; Mitra, S., Ed.; John Wiley & Sons, Inc., 2003.
https://doi.org/10.1002/0471457817.ch6

[67]. Sun, Y. C.; Yang, J. Y.; Tzeng, S. R. Analyst 1999, 124 (3), 421-424.
https://doi.org/10.1039/a809596e

[68]. Greenberg, E. A.; Clesceri, S. L.; Eaton, D. A., Standard Methods for the Examination of Water and Wastewater, 18th edition, American Public Health Association, Washington D. C., 1992.

[69]. Chambon, P.; Lound, U.; Ohanian, E. WHO Guidelines for Drinking Water Quality, Recommendations, 2nd edition, WHO, Geneva, 1993.

[70]. Ternero, M.; Gracia, I. Analyst 1983, 108 (1284), 310-315.
https://doi.org/10.1039/an9830800310

[71]. Stahr, H. M. Analytical Methods in Toxicology, 3rd edition, John Wiley and Sons, New York, 1991.

[72]. Jackson, M. L. Soil Chemical Analysis, Prentice Hall, Englewood Cliffs, 1965.

[73]. Tunceli, A.; Turker, R. Microchim. Acta 2004, 144 (1-3), 69-74.


How to cite


Ahmed, M.; Afrin, A.; Haque, M. Eur. J. Chem. 2021, 12(1), 1-12. doi:10.5155/eurjchem.12.1.1-12.2031
Ahmed, M.; Afrin, A.; Haque, M. A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide. Eur. J. Chem. 2021, 12(1), 1-12. doi:10.5155/eurjchem.12.1.1-12.2031
Ahmed, M., Afrin, A., & Haque, M. (2021). A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide. European Journal of Chemistry, 12(1), 1-12. doi:10.5155/eurjchem.12.1.1-12.2031
Ahmed, Muhammad, Ayesha Afrin, & Muhammad Emdadul Haque. "A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide." European Journal of Chemistry [Online], 12.1 (2021): 1-12. Web. 3 Jun. 2023
Ahmed, Muhammad, Afrin, Ayesha, AND Haque, Muhammad. "A highly sensitive and selective spectrofluorimetric method for the determination of molybdenum at pico-trace levels in various matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide" European Journal of Chemistry [Online], Volume 12 Number 1 (31 March 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.1.1-12.2031


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(1), 1-12 | doi: https://doi.org/10.5155/eurjchem.12.1.1-12.2031 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.