European Journal of Chemistry 2020, 11(4), 304-313 | doi: https://doi.org/10.5155/eurjchem.11.4.304-313.2033 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities


Susma Das (1) orcid , Shilpika Khanikar (2) orcid , Shunan Kaping (3) orcid , Jayanti Datta Roy (4) orcid , Arnab Sen (5) orcid , Philippe Helissey (6) orcid , Jai Narain Vishwakarma (7,*) orcid

(1) Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
(2) Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
(3) Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
(4) Indian Council of Agricultural Research Complex for North Eastern Hill Region, Umiam 793103, Meghalaya, India
(5) Indian Council of Agricultural Research Complex for North Eastern Hill Region, Umiam 793103, Meghalaya, India
(6) Laboratoire de Chimie Thérapeutique, UMR CNRS 8638, Faculte des Sciences Pharmaceutiques, Université Paris Descartes, Sorbonne Paris Cité 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
(7) Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
(*) Corresponding Author

Received: 25 Aug 2020 | Revised: 30 Sep 2020 | Accepted: 02 Oct 2020 | Published: 31 Dec 2020 | Issue Date: December 2020

Abstract


A green synthetic route leading to the discovery of a series of diversely substituted pyrazolo[1,5-a]pyrimidines, having CO2Et group embedded at position-2 has been unraveled in this article. A series of formylated active proton compounds that were chosen to react with a carboxylate substituted-3-aminopyrazole under ultrasonic irradiation in the presence of a mild acid as a catalyst and aqueous ethanol medium afforded the desired products. The molecular structures of all these synthesized compounds were established by their spectral and analytical data. A model molecule 3d, subjected to single-crystal X-ray crystallography analysis further confirms their molecular structure. The crystal crystallized to a monoclinic cell with P21/c space group, a = 7.468 (5) Å, b = 27.908 (17) Å, c = 7.232 (4) Å, β = 104.291 (7)o, V =1460.7(15) Å3, Z = 4, μ(MoKα) = 0.096 mm-1, Dcalc = 1.352 Mg/m3 16667 measured reflection (5.63 ≤ 2Θ ≤ 57.57°), 3720 unique (Rint = 0.0965, Rsigma = 0.0945) which were used in all calculations. The final R1 was 0.0750 (I > 2σ(I)) and wR2 was 0.2226 (all data). These compounds were further explored for their antibacterial potential, and a few of them have exhibited encouraging results.


Keywords


Enaminone; Single crystal; 3-Aminopyrazole; Ultrasonic irradiation; X-ray crystallography; Antibacterial properties

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.11.4.304-313.2033

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 60 times | icon graph PDF Article downloaded 18 times

Funding information


Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi-110 003, India and Indian Council of Agricultural Research (ICAR)-Barapani, Shillong, India.

References


[1]. Elgemeie, G. H.; Ali, H. A. Synth. Commun. 2002, 32, 253-264.
https://doi.org/10.1081/SCC-120002010

[2]. Gavrin, L. K.; Lee, A.; Provencher, B. A.; Massefski, W. W.; Huhn, S. D.; Ciszewski, G. M.; Cole, D. C.; McKew, J. C. J. Org. Chem. 2007, 72, 1043-1046.
https://doi.org/10.1021/jo062120g

[3]. Meng, W.; Brigance, R. P.; Zahler, R.; Hamann, L. G.; Fura, A.; Harrity, T.; Wang, A.; Kirby, M. S. Bioorg. Med. Chem. Lett. 2010, 20, 4395-4398.
https://doi.org/10.1016/j.bmcl.2010.06.063

[4]. Petroski, R. E.; Pomeroy, J. E.; Das, R.; Bowman, H.; Yang, W.; Chen, A. P.; Foster, A. C. J. Pharmacol. Exp. Ther. 2006, 317-369.
https://doi.org/10.1124/jpet.105.096701

[5]. George, C. P. F. Lancet 2001, 357, 1623.
https://doi.org/10.1016/S0140-6736(00)04765-6

[6]. Drover, D.; Lemmens, H.; Naidu, S.; Cevallos, W.; Darwish, M.; Stanski, D. Clin. Ther. 2000, 22, 1443-1461.
https://doi.org/10.1016/S0149-2918(00)83043-X

[7]. Weitzel, K. W.; Wickman, J. M.; Augustin, S. G.; Strom, J. G. Clin. Ther. 2000, 22, 1254-1267.
https://doi.org/10.1016/S0149-2918(00)83024-6

[8]. Castillo, J. C.; Rosero, H. A.; Portilla, J. RSC Adv. 2017, 7, 28483-28488.
https://doi.org/10.1039/C7RA04336H

[9]. Devi, A. S.; Kaping, S.; Vishwakarma, J. N. Mol. Divers. 2015, 19, 759-771.

[10]. Kalita, U.; Kaping, S.; Nellanant, J.; Helissey, P.; Vishwakarma, J. N. Heteroletters 2014, 4, 137-145.

[11]. Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. Mol. Divers. 2015, 20, 379-390.
https://doi.org/10.1007/s11030-015-9639-6

[12]. Kaping, S.; Kalita, U.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Monatsh. Chem. 2016, 147, 1257-1276
https://doi.org/10.1007/s00706-015-1638-x

[13]. Kaping, S.; Sunn, M.; Singha, L.; Vishwakarma, J. Eur. J. Chem. 2020, 11(1), 68-79.
https://doi.org/10.5155/eurjchem.11.1.68-79.1942

[14]. Ming, L.; Shuwen, W.; Lirong, W.; Huazheng, Y.; Xiuli, Z. J. Heterocycl. Chem. 2005, 42, 925-930.
https://doi.org/10.1002/jhet.5570420526

[15]. Bruni, F.; Chimichi, S.; Cosimelli, B.; Costanzo, A.; Guerrini, G.; Selleri, S. Heterocycles 1990, 31, 1141-1149.
https://doi.org/10.3987/COM-90-5408

[16]. Baraldi, P. G.; Fruttarolo, F.; Tabrizi, M. A.; Romagnoli, R.; Preti, D.; Ongini, E.; El-Kashef, H.; Carrion, M. D.; Borea, P. A. J. Heterocycl. Chem. 2007, 44, 355-361.
https://doi.org/10.1002/jhet.5570440212

[17]. Bruni, F.; Selleri, S.; Costanzo, A.; Guerrine, G.; Casilli, M. L. J. Heterocycl. Chem. 1995, 32, 291-298.
https://doi.org/10.1002/jhet.5570320149

[18]. Mikami, S.; Kawasaki, M.; Lkeda, S.; Negoro, N.; Nakamura, S.; Nomura, I.; Ashizawa, T.; Kokubu, H.; Hoffman, I. D.; Zou, H.; Oki, H.; Vchiyama, N.; Hiura, Y.; Miyamoto, M.; Hou, Y.; Nakashima, M.; Iwashita, H.; Taniguchi, T. Chem. Pharm. Bull. 2017, 65, 1058-1077.

[19]. Devi, S.; Helissey, P.; Nongkhlaw, R. L.; Vishwakarma, J. N. Synth. Commun. 2013, 43, 1653-1660.
https://doi.org/10.1080/00397911.2012.658946

[20]. Bruker APEX II Bruker AXS Inc., Madison, WI, USA, 2004.

[21]. Sheldrick, G. M. Acta. Cryst. A 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[22]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[23]. Souza, S. M.; Delle-Monache, F.; Smania, Jr. A. Z. Naturforsch. 2005, 60, 693-700.
https://doi.org/10.1515/znc-2005-9-1006

[24]. Sen, A.; Batra, A. Int. J. Curr. Pharm. Res. 2012, 4, 67-73.

[25]. Radl, S.; Blahovcova, M.; Tkadlecova, M.; Havlicek, Heterocycles 2010, 80, 1359-1379.
https://doi.org/10.3987/COM-09-S(S)129

[26]. Nongrum, S.; Das, S.; Khanikar, S.; Vishwakarma, J. Eur. J. Chem. 2019, 10(4), 381-385.
https://doi.org/10.5155/eurjchem.10.4.381-385.1922

[27]. Omosa, L. K.; Midiwo, J. O.; Mbaveng, A. T.; Tankeo, S. B.; Seukep, J. A.; Voukeng, I. K.; Dzotam, J. K.; Isemeki, J.; Derese, S.; Omolle, R. A.; Efferth, T.; Kuete, V. SpringerPlus 2016, 5, 901.
https://doi.org/10.1186/s40064-016-2599-1

[28]. Tsemeugne, J.; Fondjo, E. S.; Tamokou, J-de-D.; Rohand, T.; Ngongang, A. D.; Kuiate, J. R.; Sondengam, B. L. Int. J. Med. Chem. 2018, 2018, Article ID 9197821.

[29]. Jia, B.; Ma, Y. M.; Liu, B.; Chen, P.; Hu, Y.; Zhang, R. Front. Chem. 2019, 7, Article ID837, 1-13.
https://doi.org/10.3389/fchem.2019.00837

[30]. Fouda, A. M.; Abbas, H. A. S.; Ahmed, E. H.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Molecules 2019, 24, 1080-1100.
https://doi.org/10.3390/molecules24061080

[31]. Abdallah, A. EM.; Elgemeie, G. H.; Drug Des Devel Ther. 2018, 12, 1785-1798.
https://doi.org/10.2147/DDDT.S159310

[32]. Althagafi, I.; El-Sayed, R. J. Heterocycl. Chem. 2018, 55(3), 660-669.
https://doi.org/10.1002/jhet.3084


How to cite


Das, S.; Khanikar, S.; Kaping, S.; Roy, J.; Sen, A.; Helissey, P.; Vishwakarma, J. Eur. J. Chem. 2020, 11(4), 304-313. doi:10.5155/eurjchem.11.4.304-313.2033
Das, S.; Khanikar, S.; Kaping, S.; Roy, J.; Sen, A.; Helissey, P.; Vishwakarma, J. Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities. Eur. J. Chem. 2020, 11(4), 304-313. doi:10.5155/eurjchem.11.4.304-313.2033
Das, S., Khanikar, S., Kaping, S., Roy, J., Sen, A., Helissey, P., & Vishwakarma, J. (2020). Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities. European Journal of Chemistry, 11(4), 304-313. doi:10.5155/eurjchem.11.4.304-313.2033
Das, Susma, Shilpika Khanikar, Shunan Kaping, Jayanti Datta Roy, Arnab Sen, Philippe Helissey, & Jai Narain Vishwakarma. "Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities." European Journal of Chemistry [Online], 11.4 (2020): 304-313. Web. 27 Jan. 2021
Das, Susma, Khanikar, Shilpika, Kaping, Shunan, Roy, Jayanti, Sen, Arnab, Helissey, Philippe, AND Vishwakarma, Jai. "Efficient synthesis of diversely substituted pyrazolo[1,5-a]pyrimidine derivatives promoted by ultrasound irradiation in water and their antibacterial activities" European Journal of Chemistry [Online], Volume 11 Number 4 (31 December 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.11.4.304-313.2033

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2020, 11(4), 304-313 | doi: https://doi.org/10.5155/eurjchem.11.4.304-313.2033 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.