European Journal of Chemistry 2021, 12(2), 133-146 | doi: https://doi.org/10.5155/eurjchem.12.2.133-146.2073 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones


Kannan Gokula Krishnan (1) orcid , Venugopal Thanikachalam (2,*) orcid

(1) Department of Chemistry, Government Arts and Science College for Women, Karimangalam - 635 111, Tamil Nadu, India
(2) Department of Chemistry, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, India
(*) Corresponding Author

Received: 21 Jan 2021 | Revised: 28 Feb 2021 | Accepted: 07 Mar 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


Synthesis of 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones (1-5) was accomplished and it was characterized experimentally using various analytical techniques. Computational studies have been carried out for all compounds 1-5 using B3LYP method with 6-311++G(d,p) basis set. The optimized structural features viz. bond lengths, bond angles, and dihedral angles are compared with their single-crystal X-ray diffraction results of compound 1 (Crystal data for C18H13NO4 (M = 307.29 g/mol): Monoclinic, space group P21/c (no. 14), a = 11.399(5) Å, b = 5.876(5) Å, c = 21.859(5) Å, β = 91.060(5)°, V = 1463.9(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.100 mm-1, Dcalc = 1.394 g/cm3, 13555 reflections measured (3.58° ≤ 2Θ ≤ 56.98°), 3669 unique (Rint = 0.0235) which were used in all calculations. The final R1 was 0.0444 (>2sigma(I)) and wR2 was 0.1506 (all data)), which are in good conformity with each other. Normal modes of vibrational frequencies of compounds 1-5 acquired from density-functional theory (DFT) method coincided with the experimental ones. The 1H and 13C chemical shifts of compounds 1-5 have been calculated by GIAO method and the results have been compared with the experimental ones. The first-order hyperpolarizability and their related properties of the novel molecules 1-5 are calculated computationally. The other parameters like natural bond orbital, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been discussed.


Keywords


NMR; Oxime esters; NBO analysis; Single crystal XRD; Vibrational frequencies; Computational chemistry

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.133-146.2073

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 242 times | icon graph PDF Article downloaded 66 times


References


[1]. Balandrin, M. F.; Klocke, J. A.; Wurtele, E. S.; Bollinger, W. H. Science 1985, 228, 1154-1160.
https://doi.org/10.1126/science.3890182

[2]. Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins: Occurance; Chemistry and Biochemistry, Wiley: New York, 1982.

[3]. Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806-3814.
https://doi.org/10.1016/j.bmc.2014.05.032

[4]. Bhat, M. A.; Al-Omar, M. A.; Siddiqui, N. Med. Chem. Res. 2013, 22, 4455-4458.
https://doi.org/10.1007/s00044-012-0452-9

[5]. Lacy, A.; O'Kennedy, R. Curr. Pharm. Des. 2004, 10, 3797-3811.
https://doi.org/10.2174/1381612043382693

[6]. Arora, R. B.; Mathur, C. N. Br. J. Pharmacol. Chemother. 1963, 20, 29-35.
https://doi.org/10.1111/j.1476-5381.1963.tb01294.x

[7]. Singh, I. P.; Bharate, S. B.; Bhutani, K. K. Curr. Sci. 2005, 89, 269-290.

[8]. Leal, L. K.; Ferreira, A. A.; Bezerra, G. A.; Matos, F. J.; Viana, G. S. J. Ethnopharmacol. 2000, 70, 151-159.
https://doi.org/10.1016/S0378-8741(99)00165-8

[9]. Tyagi, Y. K.; Kumar, A.; Raj, H. G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.; Gupta, R. K. Eur. J. Med. Chem. 2005, 40, 413-420.
https://doi.org/10.1016/j.ejmech.2004.09.002

[10]. Wang, Z.-S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B 2005, 109, 3907-3914.
https://doi.org/10.1021/jp044851v

[11]. Huang, Q.; Bao, C.; Ji, W.; Wang, Q.; Zhu, L. J. Mater. Chem. 2012, 22, 18275-18282.
https://doi.org/10.1039/c2jm33789d

[12]. Bazzicalupi, C.; Caltagirone, C.; Cao, Z.; Chen, Q.; Di Natale, C.; Garau, A.; Lippolis, V.; Lvova, L.; Liu, H.; Lundström, I.; Mostallino, M. C.; Nieddu, M.; Paolesse, R.; Prodi, L.; Sgarzi, M.; Zaccheroni, N. Chemistry 2013, 19, 14639-14653.
https://doi.org/10.1002/chem.201302090

[13]. Rong, L.; Liu, L.-H.; Chen, S.; Cheng, H.; Chen, C.-S.; Li, Z.-Y.; Qin, S.-Y.; Zhang, X.-Z. Chem. Commun. (Camb.) 2014, 50, 667-669.
https://doi.org/10.1039/C3CC47323F

[14]. Secci, D.; Carradori, S.; Bolasco, A.; Chimenti, P.; Yáñez, M.; Ortuso, F.; Alcaro, S. Eur. J. Med. Chem. 2011, 46, 4846-4852.
https://doi.org/10.1016/j.ejmech.2011.07.017

[15]. Matos, M. J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L.; Viña, D. Bioorg. Med. Chem. Lett. 2011, 21, 4224-4227.
https://doi.org/10.1016/j.bmcl.2011.05.074

[16]. Politzer, P.; Murray, J. S. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley, West Sussex, 2009.

[17]. Krishnan, G., K.; Sivakumar, R.; Thanikachalam, V. J. Serb. Chem. Soc. 2015, 80, 1101-1111.
https://doi.org/10.2298/JSC141113037K

[18]. Karakurt, A.; Alagöz, M. A.; Sayoğlu, B.; Calış, U.; Dalkara, S. Eur. J. Med. Chem. 2012, 57, 275-282.
https://doi.org/10.1016/j.ejmech.2012.08.037

[19]. Bachovchin, D. A.; Wolfe, M. R.; Masuda, K.; Brown, S. J.; Spicer, T. P.; Fernandez-Vega, V.; Chase, P.; Hodder, P. S.; Rosen, H.; Cravatt, B. F. Bioorg. Med. Chem. Lett. 2010, 20, 2254-2258.
https://doi.org/10.1016/j.bmcl.2010.02.011

[20]. Sun, R.; Li, Y.; Lü, M.; Xiong, L.; Wang, Q. Bioorg. Med. Chem. Lett. 2010, 20, 4693-4699.
https://doi.org/10.1016/j.bmcl.2010.04.144

[21]. Liu, X.-H.; Pan, L.; Tan, C.-X.; Weng, J.-Q.; Wang, B.-L.; Li, Z.-M. Pestic. Biochem. Physiol. 2011, 101, 143-147.
https://doi.org/10.1016/j.pestbp.2011.08.006

[22]. Hwu, J. R.; Tsay, S.-C.; Hong, S. C.; Hsu, M.-H.; Liu, C.-F.; Chou, S.-S. P. Bioconjug. Chem. 2013, 24, 1778-1783.
https://doi.org/10.1021/bc400060h

[23]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[24]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[25]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[26]. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093-3100.
https://doi.org/10.1021/j100010a019

[27]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.
https://doi.org/10.1021/jp960976r

[28]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251-8260.
https://doi.org/10.1021/ja00179a005

[29]. Krishnan, K.; Sivakumar, R.; Thanikachalam, V. Lett. Org. Chem. 2015, 12, 31-37.
https://doi.org/10.2174/1570178611666141016215954

[30]. Wang, H.; Xu, S.-H.; Zeng, Z.; Zhang, Y.-H. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, o511.
https://doi.org/10.1107/S1600536810018453

[31]. Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69, o345.
https://doi.org/10.1107/S1600536813002948

[32]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.
https://doi.org/10.1039/p298700000s1

[33]. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. The spectrometric identification of organic compounds: International edition; 7th ed.; John Wiley & Sons: Nashville, TN, 2005.

[34]. Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 109, 79-89.
https://doi.org/10.1016/j.saa.2013.01.100

[35]. Krishnan, K. G.; Sivakumar, R.; Thanikachalam, V.; Saleem, H.; Arockia doss, M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 144, 29-42.
https://doi.org/10.1016/j.saa.2015.02.021

[36]. Arivazhagan, M.; Subhasini, V. P.; Kavitha, R. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 527-539.
https://doi.org/10.1016/j.saa.2014.02.093

[37]. Palm, A.; Werbin, H. Can. J. Chem. 1953, 31, 1004-1008.
https://doi.org/10.1139/v53-132

[38]. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons: Chichester, UK, 2004.
https://doi.org/10.1002/0470011149

[39]. Mariappan, G.; Sundaraganesan, N. J. Mol. Struct. 2014, 1063, 192-202.
https://doi.org/10.1016/j.molstruc.2014.01.064

[40]. Ayyappan, S.; Sundaraganesan, N.; Kurt, M.; Sertbakan, T. R.; Özduran, M. J. Raman Spectrosc. 2010, 41, 1379-1387.
https://doi.org/10.1002/jrs.2576

[41]. Alcolea Palafox, M. Int. J. Quantum Chem. 2000, 77, 661-684.
https://doi.org/10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J

[42]. Krishnan, K. G.; Kumar, C. U.; Lim, W.-M.; Mai, C.-W.; Thanikachalam, P. V.; Ramalingan, C. J. Mol. Struct. 2020, 1199, 127037.
https://doi.org/10.1016/j.molstruc.2019.127037

[43]. Socrates, G. Infrared and Raman characteristic group frequencies: Tables and charts; 3rd ed.; John Wiley & Sons: Chichester, England, 2004.

[44]. Snyder, R. G.; Strauss, H. L.; Elliger, C. A. J. Phys. Chem. 1982, 86, 5145-5150.
https://doi.org/10.1021/j100223a018

[45]. Karuppasamy, A.; Gokula Krishnan, K.; Pillai Velayutham Pillai, M.; Ramalingan, C. J. Mol. Struct. 2017, 1128, 674-684.
https://doi.org/10.1016/j.molstruc.2016.09.026

[46]. Stalindurai, K.; Gokula Krishnan, K.; Nagarajan, E. R.; Ramalingan, C. J. Mol. Struct. 2017, 1130, 633-643.
https://doi.org/10.1016/j.molstruc.2016.11.022

[47]. Muthu, S.; Ramachandran, G.; Uma maheswari, J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 93, 214-222.
https://doi.org/10.1016/j.saa.2012.02.107

[48]. Clarkson, J.; Smith, W. E.; Batchelder, D. N.; Smith, D. A.; Coats, A. M. J. Mol. Struct. 2003, 648, 203-214.
https://doi.org/10.1016/S0022-2860(03)00024-3

[49]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841-1846.
https://doi.org/10.1063/1.1740589

[50]. Santamaria, R.; Cocho, G.; Corona, L.; González, E. Chem. Phys. 1998, 227, 317-329.
https://doi.org/10.1016/S0301-0104(97)00320-0

[51]. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740.
https://doi.org/10.1063/1.449360

[52]. Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 72, 654-662.
https://doi.org/10.1016/j.saa.2008.11.017

[53]. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd Ed., Wiley, Hoboken, NJ, 2004.

[54]. Udaya Sri, N.; Chaitanya, K.; Prasad, M. V. S.; Veeraiah, V.; Veeraiah, A. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 728-736.
https://doi.org/10.1016/j.saa.2012.07.055

[55]. Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 101, 370-381.
https://doi.org/10.1016/j.saa.2012.09.041

[56]. Basri, R.; Khalid, M.; Shafiq, Z.; Tahir, M. S.; Khan, M. U.; Tahir, M. N.; Naseer, M. M.; Braga, A. A. C. ACS Omega 2020, 5, 30176-30188.
https://doi.org/10.1021/acsomega.0c04653

[57]. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy, 4th Ed., Brooks/Cole, Belmont, USA, 2009.

[58]. Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. In Advances in Quantum Chemistry Volume 11; Elsevier, 1978; pp. 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1

[59]. Nakano, M.; Shigemoto, I.; Yamada, S.; Yamaguchi, K. J. Chem. Phys. 1995, 103, 4175-4191.
https://doi.org/10.1063/1.470657

[60]. Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631-10643.
https://doi.org/10.1021/j100179a026

[61]. Wu, K.; Snijders, J. G.; Lin, C. J. Phys. Chem. B 2002, 106, 8954-8958.
https://doi.org/10.1021/jp014181i

[62]. Zhang, J.; Xiao, H. J. Chem. Phys. 2002, 116, 10674-10683.
https://doi.org/10.1063/1.1479136

[63]. Barone, V. J. Chem. Phys. 2004, 120, 3059-3065.
https://doi.org/10.1063/1.1637580

[64]. Rastogi, V. K.; Jain, V.; Yadav, R. A.; Singh, C.; Palafox, M. A. J. Raman Spectrosc. 2000, 31, 595-603.
https://doi.org/10.1002/1097-4555(200007)31:7<595::AID-JRS582>3.0.CO;2-9


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Krishnan, K.; Thanikachalam, V. Eur. J. Chem. 2021, 12(2), 133-146. doi:10.5155/eurjchem.12.2.133-146.2073
Krishnan, K.; Thanikachalam, V. Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones. Eur. J. Chem. 2021, 12(2), 133-146. doi:10.5155/eurjchem.12.2.133-146.2073
Krishnan, K., & Thanikachalam, V. (2021). Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones. European Journal of Chemistry, 12(2), 133-146. doi:10.5155/eurjchem.12.2.133-146.2073
Krishnan, Kannan, & Venugopal Thanikachalam. "Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones." European Journal of Chemistry [Online], 12.2 (2021): 133-146. Web. 26 Oct. 2021
Krishnan, Kannan, AND Thanikachalam, Venugopal. "Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.133-146.2073

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 133-146 | doi: https://doi.org/10.5155/eurjchem.12.2.133-146.2073 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.