European Journal of Chemistry

Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones

Crossmark


Main Article Content

Kannan Gokula Krishnan
Venugopal Thanikachalam

Abstract

Synthesis of 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones (1-5) was accomplished and it was characterized experimentally using various analytical techniques. Computational studies have been carried out for all compounds 1-5 using B3LYP method with 6-311++G(d,p) basis set. The optimized structural features viz. bond lengths, bond angles, and dihedral angles are compared with their single-crystal X-ray diffraction results of compound 1 (Crystal data for C18H13NO4 (M = 307.29 g/mol): Monoclinic, space group P21/c (no. 14), a = 11.399(5) Å, b = 5.876(5) Å, c = 21.859(5) Å, β = 91.060(5)°, V = 1463.9(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.100 mm-1, Dcalc = 1.394 g/cm3, 13555 reflections measured (3.58° ≤ 2Θ ≤ 56.98°), 3669 unique (Rint = 0.0235) which were used in all calculations. The final R1 was 0.0444 (>2sigma(I)) and wR2 was 0.1506 (all data)), which are in good conformity with each other. Normal modes of vibrational frequencies of compounds 1-5 acquired from density-functional theory (DFT) method coincided with the experimental ones. The 1H and 13C chemical shifts of compounds 1-5 have been calculated by GIAO method and the results have been compared with the experimental ones. The first-order hyperpolarizability and their related properties of the novel molecules 1-5 are calculated computationally. The other parameters like natural bond orbital, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been discussed.


icon graph This Abstract was viewed 733 times | icon graph Article PDF downloaded 404 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Krishnan, K. G.; Thanikachalam, V. Synthesis, Spectral, Crystallographic, and Computational Investigation of a Novel Molecular Hybrid 3-(1-(benzoyloxy)imino)ethyl)-2H-Chromen-2-Ones. Eur. J. Chem. 2021, 12, 133-146.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Balandrin, M. F.; Klocke, J. A.; Wurtele, E. S.; Bollinger, W. H. Science 1985, 228, 1154-1160.
https://doi.org/10.1126/science.3890182

[2]. Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins: Occurance; Chemistry and Biochemistry, Wiley: New York, 1982.

[3]. Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806-3814.
https://doi.org/10.1016/j.bmc.2014.05.032

[4]. Bhat, M. A.; Al-Omar, M. A.; Siddiqui, N. Med. Chem. Res. 2013, 22, 4455-4458.
https://doi.org/10.1007/s00044-012-0452-9

[5]. Lacy, A.; O'Kennedy, R. Curr. Pharm. Des. 2004, 10, 3797-3811.
https://doi.org/10.2174/1381612043382693

[6]. Arora, R. B.; Mathur, C. N. Br. J. Pharmacol. Chemother. 1963, 20, 29-35.
https://doi.org/10.1111/j.1476-5381.1963.tb01294.x

[7]. Singh, I. P.; Bharate, S. B.; Bhutani, K. K. Curr. Sci. 2005, 89, 269-290.

[8]. Leal, L. K.; Ferreira, A. A.; Bezerra, G. A.; Matos, F. J.; Viana, G. S. J. Ethnopharmacol. 2000, 70, 151-159.
https://doi.org/10.1016/S0378-8741(99)00165-8

[9]. Tyagi, Y. K.; Kumar, A.; Raj, H. G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.; Gupta, R. K. Eur. J. Med. Chem. 2005, 40, 413-420.
https://doi.org/10.1016/j.ejmech.2004.09.002

[10]. Wang, Z.-S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B 2005, 109, 3907-3914.
https://doi.org/10.1021/jp044851v

[11]. Huang, Q.; Bao, C.; Ji, W.; Wang, Q.; Zhu, L. J. Mater. Chem. 2012, 22, 18275-18282.
https://doi.org/10.1039/c2jm33789d

[12]. Bazzicalupi, C.; Caltagirone, C.; Cao, Z.; Chen, Q.; Di Natale, C.; Garau, A.; Lippolis, V.; Lvova, L.; Liu, H.; Lundström, I.; Mostallino, M. C.; Nieddu, M.; Paolesse, R.; Prodi, L.; Sgarzi, M.; Zaccheroni, N. Chemistry 2013, 19, 14639-14653.
https://doi.org/10.1002/chem.201302090

[13]. Rong, L.; Liu, L.-H.; Chen, S.; Cheng, H.; Chen, C.-S.; Li, Z.-Y.; Qin, S.-Y.; Zhang, X.-Z. Chem. Commun. (Camb.) 2014, 50, 667-669.
https://doi.org/10.1039/C3CC47323F

[14]. Secci, D.; Carradori, S.; Bolasco, A.; Chimenti, P.; Yáñez, M.; Ortuso, F.; Alcaro, S. Eur. J. Med. Chem. 2011, 46, 4846-4852.
https://doi.org/10.1016/j.ejmech.2011.07.017

[15]. Matos, M. J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L.; Viña, D. Bioorg. Med. Chem. Lett. 2011, 21, 4224-4227.
https://doi.org/10.1016/j.bmcl.2011.05.074

[16]. Politzer, P.; Murray, J. S. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley, West Sussex, 2009.

[17]. Krishnan, G., K.; Sivakumar, R.; Thanikachalam, V. J. Serb. Chem. Soc. 2015, 80, 1101-1111.
https://doi.org/10.2298/JSC141113037K

[18]. Karakurt, A.; Alagöz, M. A.; Sayoğlu, B.; Calış, U.; Dalkara, S. Eur. J. Med. Chem. 2012, 57, 275-282.
https://doi.org/10.1016/j.ejmech.2012.08.037

[19]. Bachovchin, D. A.; Wolfe, M. R.; Masuda, K.; Brown, S. J.; Spicer, T. P.; Fernandez-Vega, V.; Chase, P.; Hodder, P. S.; Rosen, H.; Cravatt, B. F. Bioorg. Med. Chem. Lett. 2010, 20, 2254-2258.
https://doi.org/10.1016/j.bmcl.2010.02.011

[20]. Sun, R.; Li, Y.; Lü, M.; Xiong, L.; Wang, Q. Bioorg. Med. Chem. Lett. 2010, 20, 4693-4699.
https://doi.org/10.1016/j.bmcl.2010.04.144

[21]. Liu, X.-H.; Pan, L.; Tan, C.-X.; Weng, J.-Q.; Wang, B.-L.; Li, Z.-M. Pestic. Biochem. Physiol. 2011, 101, 143-147.
https://doi.org/10.1016/j.pestbp.2011.08.006

[22]. Hwu, J. R.; Tsay, S.-C.; Hong, S. C.; Hsu, M.-H.; Liu, C.-F.; Chou, S.-S. P. Bioconjug. Chem. 2013, 24, 1778-1783.
https://doi.org/10.1021/bc400060h

[23]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[24]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[25]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[26]. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093-3100.
https://doi.org/10.1021/j100010a019

[27]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.
https://doi.org/10.1021/jp960976r

[28]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251-8260.
https://doi.org/10.1021/ja00179a005

[29]. Krishnan, K.; Sivakumar, R.; Thanikachalam, V. Lett. Org. Chem. 2015, 12, 31-37.
https://doi.org/10.2174/1570178611666141016215954

[30]. Wang, H.; Xu, S.-H.; Zeng, Z.; Zhang, Y.-H. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, o511.
https://doi.org/10.1107/S1600536810018453

[31]. Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69, o345.
https://doi.org/10.1107/S1600536813002948

[32]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.
https://doi.org/10.1039/p298700000s1

[33]. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. The spectrometric identification of organic compounds: International edition; 7th ed.; John Wiley & Sons: Nashville, TN, 2005.

[34]. Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 109, 79-89.
https://doi.org/10.1016/j.saa.2013.01.100

[35]. Krishnan, K. G.; Sivakumar, R.; Thanikachalam, V.; Saleem, H.; Arockia doss, M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 144, 29-42.
https://doi.org/10.1016/j.saa.2015.02.021

[36]. Arivazhagan, M.; Subhasini, V. P.; Kavitha, R. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 527-539.
https://doi.org/10.1016/j.saa.2014.02.093

[37]. Palm, A.; Werbin, H. Can. J. Chem. 1953, 31, 1004-1008.
https://doi.org/10.1139/v53-132

[38]. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons: Chichester, UK, 2004.
https://doi.org/10.1002/0470011149

[39]. Mariappan, G.; Sundaraganesan, N. J. Mol. Struct. 2014, 1063, 192-202.
https://doi.org/10.1016/j.molstruc.2014.01.064

[40]. Ayyappan, S.; Sundaraganesan, N.; Kurt, M.; Sertbakan, T. R.; Özduran, M. J. Raman Spectrosc. 2010, 41, 1379-1387.
https://doi.org/10.1002/jrs.2576

[41]. Alcolea Palafox, M. Int. J. Quantum Chem. 2000, 77, 661-684.
https://doi.org/10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J

[42]. Krishnan, K. G.; Kumar, C. U.; Lim, W.-M.; Mai, C.-W.; Thanikachalam, P. V.; Ramalingan, C. J. Mol. Struct. 2020, 1199, 127037.
https://doi.org/10.1016/j.molstruc.2019.127037

[43]. Socrates, G. Infrared and Raman characteristic group frequencies: Tables and charts; 3rd ed.; John Wiley & Sons: Chichester, England, 2004.

[44]. Snyder, R. G.; Strauss, H. L.; Elliger, C. A. J. Phys. Chem. 1982, 86, 5145-5150.
https://doi.org/10.1021/j100223a018

[45]. Karuppasamy, A.; Gokula Krishnan, K.; Pillai Velayutham Pillai, M.; Ramalingan, C. J. Mol. Struct. 2017, 1128, 674-684.
https://doi.org/10.1016/j.molstruc.2016.09.026

[46]. Stalindurai, K.; Gokula Krishnan, K.; Nagarajan, E. R.; Ramalingan, C. J. Mol. Struct. 2017, 1130, 633-643.
https://doi.org/10.1016/j.molstruc.2016.11.022

[47]. Muthu, S.; Ramachandran, G.; Uma maheswari, J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 93, 214-222.
https://doi.org/10.1016/j.saa.2012.02.107

[48]. Clarkson, J.; Smith, W. E.; Batchelder, D. N.; Smith, D. A.; Coats, A. M. J. Mol. Struct. 2003, 648, 203-214.
https://doi.org/10.1016/S0022-2860(03)00024-3

[49]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841-1846.
https://doi.org/10.1063/1.1740589

[50]. Santamaria, R.; Cocho, G.; Corona, L.; González, E. Chem. Phys. 1998, 227, 317-329.
https://doi.org/10.1016/S0301-0104(97)00320-0

[51]. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740.
https://doi.org/10.1063/1.449360

[52]. Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 72, 654-662.
https://doi.org/10.1016/j.saa.2008.11.017

[53]. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd Ed., Wiley, Hoboken, NJ, 2004.

[54]. Udaya Sri, N.; Chaitanya, K.; Prasad, M. V. S.; Veeraiah, V.; Veeraiah, A. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 728-736.
https://doi.org/10.1016/j.saa.2012.07.055

[55]. Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 101, 370-381.
https://doi.org/10.1016/j.saa.2012.09.041

[56]. Basri, R.; Khalid, M.; Shafiq, Z.; Tahir, M. S.; Khan, M. U.; Tahir, M. N.; Naseer, M. M.; Braga, A. A. C. ACS Omega 2020, 5, 30176-30188.
https://doi.org/10.1021/acsomega.0c04653

[57]. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy, 4th Ed., Brooks/Cole, Belmont, USA, 2009.

[58]. Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. In Advances in Quantum Chemistry Volume 11; Elsevier, 1978; pp. 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1

[59]. Nakano, M.; Shigemoto, I.; Yamada, S.; Yamaguchi, K. J. Chem. Phys. 1995, 103, 4175-4191.
https://doi.org/10.1063/1.470657

[60]. Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631-10643.
https://doi.org/10.1021/j100179a026

[61]. Wu, K.; Snijders, J. G.; Lin, C. J. Phys. Chem. B 2002, 106, 8954-8958.
https://doi.org/10.1021/jp014181i

[62]. Zhang, J.; Xiao, H. J. Chem. Phys. 2002, 116, 10674-10683.
https://doi.org/10.1063/1.1479136

[63]. Barone, V. J. Chem. Phys. 2004, 120, 3059-3065.
https://doi.org/10.1063/1.1637580

[64]. Rastogi, V. K.; Jain, V.; Yadav, R. A.; Singh, C.; Palafox, M. A. J. Raman Spectrosc. 2000, 31, 595-603.
https://doi.org/10.1002/1097-4555(200007)31:7<595::AID-JRS582>3.0.CO;2-9

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).