European Journal of Chemistry

Preparation and properties of physically plasticized chitosan films

Crossmark


Main Article Content

Hadi Salman Al-Lami
Sara Hikmet Mutasher

Abstract

Food packaging prevents conditions that can reduce food quality and shelf life. This leads to environmental pollution because it does not degrade naturally. The food packaging industry is increasingly adopting biodegradable polymer films as an alternative to plastic packaging. They are receiving great attention and are more suitable for food applications because they do not need to be eliminated as solid waste, which is why the industry has recently begun to pay more attention to food packaging films derived from natural chitosan polymers to replace traditional synthetic polymers. Shrimp cortex was used to extract the chitosan using the casting procedure; It was plasticized with different ratios of polyvinyl alcohol (PVC), namely 1:1, 1:2, 1:3, and 1:4 to create plasticized chitosan films from its solution in 2% acetic acid by casting technique. All films prepared were examined by infrared spectroscopy (FT-IR) and were found to be comparable to the original chitosan spectrum, indicating that the basic composition of the basic polymeric chitosan chains was not affected by the addition of various ratios of PVC plasticizer. Unlike unplasticized chitosan films. The results of the mechanical tensile strength measurements of plasticized chitosan films showed an improvement in tensile strength, % elongation at breakage, and a decrease in the Young modulus, which means that less rigid films were obtained, with an enhancement in their optical properties accompanying this by decreasing the opacity from 85 for unplasticized chitosan to about 3 for plasticized chitosan films. The addition of plasticizer to chitosan was also found to increase the solubility of prepared plasticized chitosan films in water and reached 100% for 1:3 chitosan:PVA in contrast to the unplasticized chitosan polymer, which is insoluble in water.


icon graph This Abstract was viewed 217 times | icon graph Article PDF downloaded 48 times

How to Cite
(1)
Al-Lami, H. S.; Mutasher , S. H. Preparation and Properties of Physically Plasticized Chitosan Films. Eur. J. Chem. 2025, 16, 64-69.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Williams, A. T.; Rangel-Buitrago, N. The past, present, and future of plastic pollution. Mar. Pollut. Bull. 2022, 176, 113429.
https://doi.org/10.1016/j.marpolbul.2022.113429

[2]. Nayanathara Thathsarani Pilapitiya, P.; Ratnayake, A. S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220.
https://doi.org/10.1016/j.clema.2024.100220

[3]. Lim, H.; Hoag, S. W. Plasticizer effects on physical-mechanical properties of solvent cast soluplus films. AAPS PharmSciTech. 2013, 14 (3), 903-910.
https://doi.org/10.1208/s12249-013-9971-z

[4]. Zaboon, M.; Saleh, A.; Al-Lami, H. Synthesis, Characterization and cytotoxicity investigation of chitosan-amino acid derivatives nanoparticles in human breast cancer cell lines. J. Mex. Chem. Soc. 2021, 65 (2), 178-188.
https://doi.org/10.29356/jmcs.v65i2.1265

[5]. Farion, I. A.; Burdukovskii, V. F.; Kholkhoev, B. C.; Timashev, P. S.; Chailakhyan, R. K. Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review. Express Polym. Lett. 2018, 12 (12), 1081-1105.
https://doi.org/10.3144/expresspolymlett.2018.95

[6]. Puvvada, Y. S.; Vankayalapati, S.; Sukhavasi, S. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 2012, 1 (9), 258-263.
https://doi.org/10.3329/icpj.v1i9.11616

[7]. Islam, S.; Bhuiyan, M. A.; Islam, M. N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2016, 25 (3), 854-866.
https://doi.org/10.1007/s10924-016-0865-5

[8]. Yao, Q.; Huang, F.; Lu, Y.; Huang, J.; Ali, M.; Jia, X.; Zeng, X.; Huang, Y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Amp; Technol. 2024, 147, 104390.
https://doi.org/10.1016/j.tifs.2024.104390

[9]. Navarro, R.; Pérez Perrino, M.; Gómez Tardajos, M.; Reinecke, H. Phthalate Plasticizers Covalently Bound to PVC: Plasticization with Suppressed Migration. Macromolecules 2010, 43 (5), 2377-2381.
https://doi.org/10.1021/ma902740t

[10]. Sixto-Berrocal, A. M.; Vázquez-Aldana, M.; Miranda-Castro, S. P.; Martínez-Trujillo, M. A.; Cruz-Díaz, M. R. Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. Int. J. Biol. Macromol. 2023, 230, 123204.
https://doi.org/10.1016/j.ijbiomac.2023.123204

[11]. Hossain, M.; Iqbal, A. Production and characterization of chitosan from shrimp waste. J. Bangladesh Agric. Univ. 2014, 12 (1), 153-160.
https://doi.org/10.3329/jbau.v12i1.21405

[12]. Mutasher, S. H.; Al-Lami, H. S. The effect of different molecular weight chitosan on the physical and mechanical properties of plasticized films. Eur. J. Chem. 2022, 13 (4), 460-467.
https://doi.org/10.5155/eurjchem.13.4.460-467.2341

[13]. Wardhono, E. Y.; Pinem, M. P.; Susilo, S.; Siom, B. J.; Sudrajad, A.; Pramono, A.; Meliana, Y.; Guénin, E. Modification of physio-mechanical properties of chitosan-based films via physical treatment approach. Polymers 2022, 14 (23), 5216-5230.
https://doi.org/10.3390/polym14235216

[14]. Kanatt, S. R.; Rao, M.; Chawla, S.; Sharma, A. Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012, 29 (2), 290-297.
https://doi.org/10.1016/j.foodhyd.2012.03.005

[15]. Hafsa, J.; Smach, M. a.; Ben Khedher, M. R.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT - Food Sci. Technol. 2016, 68, 356-364.
https://doi.org/10.1016/j.lwt.2015.12.050

[16]. Roy, S.; Zhai, L.; Kim, H. C.; Pham, D. H.; Alrobei, H.; Kim, J. Tannic-Acid-Cross-Linked and TiO2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers 2021, 13 (2), 228-246.
https://doi.org/10.3390/polym13020228

[17]. Ashrafi, A.; Jokar, M.; Mohammadi Nafchi, A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018, 108, 444-454.
https://doi.org/10.1016/j.ijbiomac.2017.12.028

[18]. Muñoz-Tebar, N.; Pérez-Álvarez, J. A.; Fernández-López, J.; Viuda-Martos, M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers 2023, 15 (2), 396-426.
https://doi.org/10.3390/polym15020396

[19]. Ressutte, J. B.; da Silva Saranti, T. F.; de Moura, M. R.; dos Santos Pozza, M. S.; da Silva Scapim, M. R.; Stafussa, A. P.; Madrona, G. S. Citric acid incorporated in a chitosan film as an active packaging material to improve the quality and duration of matured cheese shelf life. J. Dairy Res. 2022, 89 (2), 201-207.
https://doi.org/10.1017/S0022029922000383

[20]. Pires, J. R. F.; Rodrigues, C.; Coelhoso, I.; Fernando, A. L.; Souza, V. G. Current applications of bionanocomposites in food processing and packaging. Polymers 2023, 15 (10), 2336-2359.
https://doi.org/10.3390/polym15102336

[21]. Priyanka, S.; S, K. R.; R. S., A. B.; John, A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties-- A sustainable developmental goal towards the effective, safe food preservation strategy. Chemosphere 2023, 336, 139240.
https://doi.org/10.1016/j.chemosphere.2023.139240

[22]. Nicolle, L.; Journot, C. M.; Gerber-Lemaire, S. Chitosan functionalization: Covalent and non-covalent interactions and their characterization. Polymers 2021, 13 (23), 4118-4149.
https://doi.org/10.3390/polym13234118

[23]. Zaboon, M.; Saleh, A.; Al-Lami, H. Comparative cytotoxicity and genotoxicity assessments of chitosan amino acid derivative nanoparticles toward human breast cancer cell lines. Egypt. J. Chem. 2019, 62 (11), 2061-2075.

[24]. Sokolova, M. P.; Smirnov, M. A.; Samarov, A. A.; Bobrova, N. V.; Vorobiov, V. K.; Popova, E. N.; Filippova, E.; Geydt, P.; Lahderanta, E.; Toikka, A. M. Plasticizing of chitosan films with deep eutectic mixture of malonic acid and choline chloride. Carbohydr. Polym. 2018, 197, 548-557.
https://doi.org/10.1016/j.carbpol.2018.06.037

[25]. Choudhari, S.; Premakshi, H.; Kariduraganavar, M. Preparation and pervaporation performance of chitosan-poly(methacrylic acid) polyelectrolyte complex membranes for dehydration of 1,4-dioxane. Polym. Eng. Sci. 2016, 56 (6), 715-724.
https://doi.org/10.1002/pen.24298

[26]. Cobos, M.; González, B.; Fernández, M. J.; Fernández, M. D. Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties. J. Applied Polymer Sci. 2017, 134 (30), 45092-45101.
https://doi.org/10.1002/app.45092

[27]. de Oliveira, A. C.; Santos, T. A.; Ugucioni, J. C.; da Rocha, R. A.; Borges, S. V. Effect of glycerol on electrical conducting of chitosan/polyaniline blends. J. Applied Polymer Sci. 2021, 138 (42), 14-18. https://doi.org/10.1002/app.51249.
https://doi.org/10.1002/app.51249

[28]. Mahdi, A. A. Hazardous Bismarck brown dye adsorption on graphene oxide and its chitosan and ethylenediaminetetraacetic acid derivatives. Bas. J. Sci. BASJS 2022, 40 (1), 15-42.
https://doi.org/10.29072/basjs.20220102

[29]. Riaz, U.; Ashraf, S. M. Characterization of polymer blends with FTIR spectroscopy. Charact. Polym. Blends 2014, 625-678.
https://doi.org/10.1002/9783527645602.ch20

[30]. Alamri, M.; Qasem, A. A.; Mohamed, A. A.; Hussain, S.; Ibraheem, M. A.; Shamlan, G.; Alqah, H. A.; Qasha, A. S. Food packaging's materials: A food safety perspective. Saudi J. Biol. Sci. 2021, 28 (8), 4490-4499.
https://doi.org/10.1016/j.sjbs.2021.04.047

[31]. Bof, M. J.; Bordagaray, V. C.; Locaso, D. E.; García, M. A. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll. 2015, 51, 281-294.
https://doi.org/10.1016/j.foodhyd.2015.05.018

[32]. Caicedo, C.; Díaz-Cruz, C. A.; Jiménez-Regalado, E. J.; Aguirre-Loredo, R. Y. Effect of plasticizer content on mechanical and water vapor permeability of maize starch/PVOH/chitosan composite films. Materials 2022, 15 (4), 1274-1285.
https://doi.org/10.3390/ma15041274

[33]. Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M. A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168-177.
https://doi.org/10.1016/j.foodhyd.2015.01.032

[34]. Russo, T.; D'Amora, U.; Gloria, A.; Tunesi, M.; Sandri, M.; Rodilossi, S.; Albani, D.; Forloni, G.; Giordano, C.; Cigada, A.; Tampieri, A.; De Santis, R.; Ambrosio, L. Systematic analysis of injectable materials and 3D rapid prototyped magnetic scaffolds: From CNS applications to soft and hard tissue repair/regeneration. Procedia Eng. 2013, 59, 233-239.
https://doi.org/10.1016/j.proeng.2013.05.116

[35]. Abraham, A.; Soloman, P. A.; Rejini, V. O. Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties. Procedia Technol. 2016, 24, 741-748.
https://doi.org/10.1016/j.protcy.2016.05.206

[36]. Shojaee Kang Sofla, M.; Mortazavi, S.; Seyfi, J. Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr. Polym. 2020, 232, 115784.
https://doi.org/10.1016/j.carbpol.2019.115784

[37]. Abdeen, Z. Swelling and reswelling characteristics of cross-linked poly(vinyl alcohol)/chitosan hydrogel film. J. Dispers. Sci. Technol. 2011, 32 (9), 1337-1344.
https://doi.org/10.1080/01932691.2010.505869

[38]. Kandile, N. G.; Nasr, A. S. Poly(vinyl alcohol) membranes-inspired heterocyclic compounds for different applications: synthesis and characterization. Polym. Bull. 2022, 80 (3), 2367-2387.
https://doi.org/10.1007/s00289-022-04143-z

[39]. El-Hefian, E. A.; Nasef, M. M.; Yahaya, A. H. The Preparation and characterization of chitosan / poly(vinyl alcohol) blended films. J. Chem. 2010, 7 (4), 1212-1219.
https://doi.org/10.1155/2010/626235

[40]. Hyder, M.; Chen, P. Pervaporation dehydration of ethylene glycol with chitosan-poly(vinyl alcohol) blend membranes: Effect of CS-PVA blending ratios. J. Membr. Sci. 2009, 340 (1-2), 171-180.
https://doi.org/10.1016/j.memsci.2009.05.021

[41]. Bahrami, S. B.; Kordestani, S. S.; Mirzadeh, H.; Mansoori, P. Poly (vinyl alcohol)-chitosan blends: Preparation, mechanical and physical properties. Iran Polym. J. 2003, 12 (2), 139-146.

[42]. Molaei, S. The measurement of Young's modulus of thin films using secondary laser speckle patterns. Measurement 2016, 92, 28-33.
https://doi.org/10.1016/j.measurement.2016.05.094

[43]. Lusiana, R. A.; Siswanta, D.; Mudasir, M. Preparation of citric acid crosslinked chitosan/poly(vinyl alcohol) blend membranes for creatinine transport. Indones. J. Chem. 2018, 16, 144-150.
https://doi.org/10.22146/ijc.21157

[44]. Qin, C.; li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63 (3), 367-374.
https://doi.org/10.1016/j.carbpol.2005.09.023

[45]. Chen, H.; Wu, C.; Feng, X.; He, M.; Zhu, X.; Li, Y.; Teng, F. Effects of two fatty acids on soy protein isolate/sodium alginate edible films: Structures and properties. LWT 2022, 159, 113221.
https://doi.org/10.1016/j.lwt.2022.113221

[46]. Chung, Y.; Kuo, C.; Chen, C. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresour. Technol. 2005, 96 (13), 1473-1482.
https://doi.org/10.1016/j.biortech.2004.12.001

[47]. Henriques, B. S.; Garcia, E. S.; Azambuja, P.; Genta, F. A. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front. Physiol. 2020, 11, 117-126.
https://doi.org/10.3389/fphys.2020.00117

[48]. Rodríguez-Núñez, J. R.; Madera-Santana, T. J.; Sánchez-Machado, D. I.; López-Cervantes, J.; Soto Valdez, H. Chitosan/Hydrophilic Plasticizer-Based Films: Preparation, Physicochemical and Antimicrobial Properties. J. Polym. Environ. 2013, 22 (1), 41-51.
https://doi.org/10.1007/s10924-013-0621-z

[49]. Liu, T.; Li, J.; Tang, Q.; Qiu, P.; Gou, D.; Zhao, J. Chitosan-based materials: An overview of potential applications in food packaging. Foods 2022, 11 (10), 1490.
https://doi.org/10.3390/foods11101490

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).