European Journal of Chemistry 2012, 3(2), 156-162. doi:10.5155/eurjchem.3.2.156-162.542

Calix[4]pyrrole macrocycle: Extraction of fluoride anions from aqueous media


Ismail Ibrahim Abbas (1,*) , Hassan Hasan Hammud (2) , Hasan Shamsaldeen (3)

(1) Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut, 115020, Lebanon
(2) Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut, 115020, Lebanon
(3) Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut, 115020, Lebanon
(*) Corresponding Author

Received: 01 Nov 2011, Accepted: 04 Jan 2012, Published: 30 Jun 2012

Abstract


Solid-phase extraction of fluoride anions by calixpyrrole macrocycle (CP) from aqueous media has been studied using the batch method. Various significant extraction parameters like initial concentration of the anion, extraction time, concentration of the calixpyrrole, pH and temperature were evaluated. Langmuir, Freundlichand, Dubinin-Redushkevish (D-R) isotherms and coefficients were used to analyze the equilibrium data. The amount of fluoride anion extracted per unit of the CP was found to be 0.40 mg/g at 298 K from 19 mg/L aqueous solution of fluoride anions. The mean free energy calculated from D-R model for the removal of fluoride anions by the CP was found to be 10.0 kJ/mol, indicating that chemisorption is involved in the extraction process. The data were also fitted to kinetic models such as pseudo first order and pseudo second order. The removal of fluoride anions increased with increasing temperature indicating the endothermic nature of the extraction process. The present method has been compared with the previous methods.

3_2_156_162_800


Keywords


Langmuir; Freundlich; Extraction; Fluoride anion; Calix[4]pyrrole; Dubbin-Redushkevich isotherm

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.3.2.156-162.542

Article Metrics


This Abstract was viewed 1566 times | PDF Article downloaded 301 times

Citations

/


[1]. Hassan H. Hammud, Ali El-Shaar, Essam Khamis, El-Sayed Mansour
Adsorption Studies of Lead by Enteromorpha Algae and Its Silicates Bonded Material
Advances in Chemistry  2014, 1, 2014
DOI: 10.1155/2014/205459
/


[2]. Ismail Ibrahim Abbas, Bassem Mohamad Riad El Hamaoui, Hilal Mohamad Jamal Najmeddine
Application of calixpyrrole modified silica for the removal of 4-chlorophenol from aqueous media
European Journal of Chemistry  10(2), 156, 2019
DOI: 10.5155/eurjchem.10.2.156-165.1846
/


[3]. Amit Kumar Rawat, S.M.S. Chauhan
Efficient ZnCl2 assisted synthesis of calix[4]pyrroles catalysed by Brønsted acidic ionic liquids
Tetrahedron Letters  55(51), 6969, 2014
DOI: 10.1016/j.tetlet.2014.10.020
/


[4]. Hamid Khanmohammadi, Khatereh Rezaeian, Nafiseh Shabani
Rational Design of Azo-Azomethine Receptors for Sensing of Inorganic Fluoride: Construction of Molecular Logic Gates and DFT Study
Australian Journal of Chemistry  70(12), 1254, 2017
DOI: 10.1071/CH17310
/


[5]. Hassan H. Hammud, Ismail Abbas, Diana Al-khalili
Kinetics and thermodynamics of chromate and phosphate uptake by polypyrrole: batch and column studies
Journal of Inclusion Phenomena and Macrocyclic Chemistry  82(3-4), 395, 2015
DOI: 10.1007/s10847-015-0502-2
/


[6]. Wenqi Liu, Allen G. Oliver, Bradley D. Smith
Stabilization and Extraction of Fluoride Anion Using a Tetralactam Receptor
The Journal of Organic Chemistry  84(7), 4050, 2019
DOI: 10.1021/acs.joc.9b00042
/


[7]. Hamid Khanmohammadi, Khatereh Rezaeian
Naked-eye detection of inorganic fluoride in aqueous media using a new azo-azomethine colorimetric receptor enhanced by electron withdrawing groups
RSC Adv.  4(2), 1032, 2014
DOI: 10.1039/C3RA42709A
/


References

[1]. Shen, F. X.; Gao, P.; Chen, G. Chem. Eng. Sci. 2003, 58, 987-993.
http://dx.doi.org/10.1016/S0009-2509(02)00639-5

[2]. Grimaldo, M. V.; Ramirez, A. B. A.; Rosas, M.; Diaz-Barriga, F. Environ. Res. 1995, 68, 25-30.
http://dx.doi.org/10.1006/enrs.1995.1004
PMid:7729383

[3]. Abe, I.; Iwasaki, S.; Tokimoto, T.; Kawasaki, N. J. Colloid Interface Sci. 2004, 275, 35-39.
http://dx.doi.org/10.1016/j.jcis.2003.12.031
PMid:15158376

[4]. Mahramanlioglu, M.; Kizilcikli, I.; Bicer, I. O. J. Fluorine Chem. 2002, 115, 41-47.
http://dx.doi.org/10.1016/S0022-1139(02)00003-9

[5]. Maliyekkal, S. M.; Antony, K. R.; Pradeep, T. Sci. Total Environ. 2010, 408, 2273-2282
http://dx.doi.org/10.1016/j.scitotenv.2010.01.062
PMid:20178886

[6]. Karthikeyan, M.; Satheeshkumar, K. K.; Elango, K. P. J. Fluorine Chem. 2009, 130, 894-901.
http://dx.doi.org/10.1016/j.jfluchem.2009.06.024

[7]. Karthikeyan, M.; Satheeshkumar, K. K.; Elango, K. P. J. Hazard. Mater. 2009, 167, 300-305.
http://dx.doi.org/10.1016/j.jhazmat.2008.12.141
PMid:19233561

[8]. Karthikeyan, M.; Satheeshkumar, K. K.; Elango, K. P. J. Hazard. Mater. 2009, 163, 1026-1032.
http://dx.doi.org/10.1016/j.jhazmat.2008.07.057
PMid:18760534

[9]. Viswanathan, N.; Meenakshi, S. Appl. Clay Sci. 2010, 48, 607-611.
http://dx.doi.org/10.1016/j.clay.2010.03.012

[10]. Gopal, V.; Elango, K. P. J. Hazard. Mater. 2007, 141, 98-105.
http://dx.doi.org/10.1016/j.jhazmat.2006.06.099
PMid:16901628

[11]. Danil de Namor, A. F.; Shehab, M. J. Phys. Chem. B 2003, 107, 6462-6468.
http://dx.doi.org/10.1021/jp0226174

[12]. Danil de Namor, A. F.; Shehab, M. J. Phys. Chem. A 2004, 108, 7324-7330.
http://dx.doi.org/10.1021/jp031343x

[13]. Danil de Namor, A. F.; Abbas, I.; Hammud, H. J. Phys. Chem. B 2006, 110, 2142-2149.
http://dx.doi.org/10.1021/jp056492p
PMid:16471796

[14]. Danil de Namor, A. F.; Shehab, M.; Abbas, I.; Withams, M. V.; Zvietcovich-Guerra, J. J. Phys. Chem. B 2006, 110, 12653-12659.
http://dx.doi.org/10.1021/jp060859o
PMid:16800598

[15]. Danil de Namor A. F.; Shehab, M. J. Phys. Chem. B 2005, 109, 17440-17444.
http://dx.doi.org/10.1021/jp0530707
PMid:16853230

[16]. Danil de Namor, A. F.; Abbas, I.; Hammud, H. J. Phys. Chem. B 2007, 111, 3098-3105.
http://dx.doi.org/10.1021/jp067798e
PMid:17388462

[17]. Atwood, J. L.; Davies, J. E. D.; Macnicol, D. D.; Vogtle, F.; Eds. Comprehensive Supramolecular Chemistry, Molecular Recognition Receptors for Cationic Guests, Vol. 1; Elsevier Science: Amsterdam, 1996.

[18]. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Eds.; John Wiley & Sons: Ltd.: Chichester, U. K., 2000.

[19]. Lehn, J. M.; Supramolecular Chemistry; VCH: New York, 1995.
http://dx.doi.org/10.1002/3527607439

[20]. Sessler, J. L.; Gale, P. A.; Genge, J. W. Chem. Eur. J. 1998, 6, 1095-1099.
http://dx.doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1095::AID-CHEM1095>3.0.CO;2-1

[21]. Beer, D. P.; Gale, P. A. Coord. Chem. Rev. 1999, 185, 3-36.
http://dx.doi.org/10.1016/S0010-8545(98)00246-X

[22]. Gale, P. A.; Anzenbacher, P.; Sessler, J. L. Coord. Chem. Rev. 2002, 222, 57-102.
http://dx.doi.org/10.1016/S0010-8545(01)00346-0

[23]. Baeyer, A. Ber. Dtsch. Chem. Ges. 1886, 19, 2184-2185.
http://dx.doi.org/10.1002/cber.188601902121

[24]. Aydogan, A.; Coady, D. J.; Lynch, V. M; Akar, A.; Marquez, M.; Bielawski, C. W.; Sessler, J. L. Angew. Chem. 2008, 120, 9794-9798.
http://dx.doi.org/10.1002/ange.200803970

[25]. Miyaji H.; Sessler, J. L. Supramol. Chem. 2001, 13, 661-669.
http://dx.doi.org/10.1080/10610270108027495

[26]. Danil de Namor, A. F.; Abbas, I.; in “Calixpyrrole-Fluoride Interactions: From Fundamental Research to Applications in the Environmental Field”. Chapter of book entitled ‘Advances in Fluorine Science’, A. Tressaud (Ed.), Elsevier, Vol. 2, 2006.

[27]. Danil de Namor, A. F.; Khalife, R. J. Phys. Chem. B 2008, 112, 15766-15770.
http://dx.doi.org/10.1021/jp8045356
PMid:19053691

[28]. Nishiyabu, R.; Anzenbacher, Jr. P. Org. Lett. 2006, 8, 359-362.
http://dx.doi.org/10.1021/ol0521782
PMid:16435834

[29]. Ganvir, V.; Das, K. J. Hazard. Mater. 2011, 185, 1287-1294.
http://dx.doi.org/10.1016/j.jhazmat.2010.10.044
PMid:21074319

[30]. Dubinin, M. M.; Radushkevich, L. V. Proceedings of the Academy of Sciences, Physical Chemistry Section, U. S. S. R. 55, 1947, 331-333.

[31]. Danil de Namor A. F.; Abbas, I. Anal. Methods 2010, 2, 63-71.
http://dx.doi.org/10.1039/b9ay00135b

[32]. Sawalha, M. F.; Videa, J. R. P.; Gonzalez, J. R.; Gardea-Torresdey; J. L. J. Colloid. Interf. Sci. 2006, 300, 100-104.
http://dx.doi.org/10.1016/j.jcis.2006.03.029
PMid:16600278

[33]. Namasivayam C.; Yamuna, R. T. Chemosphere 1993, 30, 561-578.
http://dx.doi.org/10.1016/0045-6535(94)00418-T

[34]. Orhan, Y.; Buyukgungor, H. Water Sci. Technol. 1993, 28(2), 247-255.

[35]. Lagergren, S. Kungliga Svenska Vetenskapsakademiens, Handlingar 1898, 24, 1-39.

[36]. Ho, Y. S.; McKay, G. Process Saf. Environ. 1998, 76, 332-340.
http://dx.doi.org/10.1205/095758298529696

[37]. Karthikeyan, M.; Satheesh Kumar, K. K.; Elango, K. P. Desalination 2011, 267, 49-56
http://dx.doi.org/10.1016/j.desal.2010.09.005

[38]. Sathish, R. S.; Raju, N. S. R.; Raju, G. S.; NageswaraRao, G.; Kumar, Janardhana, K. A. C. Sep. Sci. Technol. 2007, 42(4), 769-788.
http://dx.doi.org/10.1080/01496390601070067

[39]. Kamble, S. P.; Jagtap, S.; Labhsetwar, N. K.; Thakare, D.; Godfrey, S.; Devotta, S.; Rayalu, S. S. Chem. Eng. J. 2007, 129, 173-180.
http://dx.doi.org/10.1016/j.cej.2006.10.032

[40]. Gupta, V. K.; Ali, I.; Saini; V. P. K. Water Res. 2007, 41, 3307-3316.
http://dx.doi.org/10.1016/j.watres.2007.04.029
PMid:17583767

[41]. Aravind V.; Elango, K. P. Indian J. Chem. Technol. 2006, 13, 476-483.

[42]. Jeong, K. S.; Park, T. Y. Bull. Korean Chem. Soc. 1999, 20, 129-131.

[43]. Danil de Namor, A. F.; Pugliese, A.; Casal, A. R.; Llerena, M. B.; Aymonino, P. J.; Velarde, J. S. Phys. Chem. Chem. Phys. 2000, 2, 4355-4359.
http://dx.doi.org/10.1039/b004703l

[44]. Solangi, I. B.; Memon, S.; Bhanger, M. I. J. Hazard. Mater. 2009, 171, 815-819.
http://dx.doi.org/10.1016/j.jhazmat.2009.06.072
PMid:19608334

[45]. Solangi, I. B.; Memon, S.; Bhanger, M. I. J. Hazard. Mater. 2010, 176, 186-192
http://dx.doi.org/10.1016/j.jhazmat.2009.11.011
PMid:19951827

[46]. Solangi, I. B.; Bhatti, A. A.; Kamboh, M. A.; Memon, S.; Bhanger, M. I. Desalination 2011, 272, 98-106.
http://dx.doi.org/10.1016/j.desal.2011.01.005

[47]. Solangi, I. B.; Bhatti, A. A.; Kamboh, M. A.; Memon, S.; Bhanger, M. I. Sep. Sci. Tech. 2011, 46, 1113-1120.
http://dx.doi.org/10.1080/01496395.2010.543248


How to cite


Abbas, I.; Hammud, H.; Shamsaldeen, H. Eur. J. Chem. 2012, 3(2), 156-162. doi:10.5155/eurjchem.3.2.156-162.542
Abbas, I.; Hammud, H.; Shamsaldeen, H. Calix[4]pyrrole macrocycle: Extraction of fluoride anions from aqueous media. Eur. J. Chem. 2012, 3(2), 156-162. doi:10.5155/eurjchem.3.2.156-162.542
Abbas, I., Hammud, H., & Shamsaldeen, H. (2012). Calix[4]pyrrole macrocycle: Extraction of fluoride anions from aqueous media. European Journal of Chemistry, 3(2), 156-162. doi:10.5155/eurjchem.3.2.156-162.542
Abbas, Ismail, Hassan Hasan Hammud, & Hasan Shamsaldeen. "Calix[4]pyrrole macrocycle: Extraction of fluoride anions from aqueous media." European Journal of Chemistry [Online], 3.2 (2012): 156-162. Web. 16 Sep. 2019
Abbas, Ismail, Hammud, Hassan, AND Shamsaldeen, Hasan. "Calix[4]pyrrole macrocycle: Extraction of fluoride anions from aqueous media" European Journal of Chemistry [Online], Volume 3 Number 2 (30 June 2012)

DOI Link: https://doi.org/10.5155/eurjchem.3.2.156-162.542

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.