European Journal of Chemistry 2013, 4(4), 425-433. doi:10.5155/eurjchem.4.4.425-433.776

Lead uptake by new silica-carbon nanoparticles


Hassan Hasan Hammud (1,*) , Mayssam Mostafa Chahine (2) , Bassem El-Hamaoui (3) , Younes Hanifehpour (4)

(1) Department of Chemistry, Faculty of Sciences, Beirut Arab University, Debbieh, 11-5020, Lebanon
(2) Department of Chemistry, Faculty of Sciences, Beirut Arab University, Debbieh, 11-5020, Lebanon
(3) Department of Chemistry, Faculty of Sciences, Beirut Arab University, Debbieh, 11-5020, Lebanon
(4) Nanoresearch Center, School of Mechanical Engineering, Yeungnam University, Gyongsan, 712-749, South Korea
(*) Corresponding Author

Received: 19 Mar 2013, Accepted: 03 Jul 2013, Published: 31 Dec 2013

Abstract


Silica-carbon nanoparticles (SCNP) were prepared from sonication of silica and anthracene. The size of homogenous nanoparticle is around 5-20 nm confirmed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). SEM analysis indicated surface porosity. SCNP were used to remove lead ions (Pb(II)) from aqueous solutions. Adsorption isotherm of Pb(II) on SCNP was well fitted in terms of the Freundlich and Langmuir models. The maximum adsorption capacity of SCNP for Pb(II) was found to be 385 mg/g (1.86 mmol/g) in batch experiment. Thermodynamic studies indicated that sorption process of lead onto SCNP was spontaneous and exothermic. A pseudo-second order model has been employed in order to describe the kinetic adsorption processes, and the thermodynamic activation parameters were calculated. In a column studies, qy the Yan adsorption capacity of SCNP for Pb(II) was found to be 130.66 mg/g (0.63 mmol/g).

4_4_425_433

Keywords


Lead; Kinetics; Adsorption; Thermodynamics; Silica-carbon nanoparticle; Scanning electron microscope

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.4.4.425-433.776

Article Metrics


This Abstract was viewed 778 times | PDF Article downloaded 261 times

Citations

/


[1]. Hassan H. Hammud, Abeer Shmait, Nadim Hourani
Removal of Malachite Green from water using hydrothermally carbonized pine needles
RSC Advances  5(11), 7909, 2015
DOI: 10.1039/C4RA15505J
/


[2]. Mohamed Nouh Kouraim, Mohamed El Said Sheta, Mostafa Mahmoud Abd Elaal
Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402
European Journal of Chemistry  5(3), 446, 2014
DOI: 10.5155/eurjchem.5.3.446-450.1026
/


[3]. Zvezdelina Lyubenova Yaneva, Manuela Stoyanova Staleva, Nedyalka Valkanova Georgieva
Study on the host-guest interactions during caffeine encapsulation into zeolite
European Journal of Chemistry  6(2), 169, 2015
DOI: 10.5155/eurjchem.6.2.169-173.1228
/


[4]. Mohammad Hanbali, Hanafy Holail, Hassan Hammud
Remediation of lead by pretreated red algae: adsorption isotherm, kinetic, column modeling and simulation studies
Green Chemistry Letters and Reviews  7(4), 342, 2014
DOI: 10.1080/17518253.2014.955062
/


References

[1]. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, CA, 1996.

[2]. Endo, M.; Hayashi, T.; Ahm, K. Y. Pure Appl. Chem. 2006, 78, 1703-1713.
http://dx.doi.org/10.1351/pac200678091703

[3]. Huang, H.; Kajiura, H.; Tsutsui, S.; Hirano, Y.; Miyakoshi, M.; Yamada, A.; Ata, M. Chem. Phys. Lett. 2001, 343(1-2), 7-14.
http://dx.doi.org/10.1016/S0009-2614(01)00631-5

[4]. Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; NikoLaevl, P.; Rinzler, A. G.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chem. Phys. Lett. 1998, 296(1-2), 195-202.
http://dx.doi.org/10.1016/S0009-2614(98)01024-0

[5]. Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S. Chem. Mater. 1998, 10(1), 260-267.
http://dx.doi.org/10.1021/cm970412f

[6]. Laplaze, D.; Bernier, P.; Maser, W. K.; Flamant, G.; Guillard, T.; Loiseau, A. Carbon 1998, 36(5-6), 685-688.
http://dx.doi.org/10.1016/S0008-6223(98)00025-6

[7]. Suslick, K. S. MRS Bull. 1995, 20, 29-33.

[8]. Jeong, S. H.; Ko, J. H.; Park, J. B.; Park, W. J. Am. Chem. Soc. 2004, 126(49), 15982-15983.
http://dx.doi.org/10.1021/ja0451867
PMid:15584730

[9]. Stafiej, A.; Pyrzynska, K. Sep. Purif. Technol. 2008, 58, 49-52.
http://dx.doi.org/10.1016/j.seppur.2007.07.008

[10]. Hsieh, S. H.; Horng, J. J. J. Univ. Sci. Technol. Beijing 2007, 14(1), 77-84.
http://dx.doi.org/10.1016/S1005-8850(07)60016-4

[11]. Li, Y. H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B. Chem. Phys. Lett. 2002, 357, 263-266.
http://dx.doi.org/10.1016/S0009-2614(02)00502-X

[12]. Li, Y. H.; Wang, S.; Luan, Z.; Ding, J.; Xu, C.; Wu, D. Carbon 2003, 41, 1057-1062.
http://dx.doi.org/10.1016/S0008-6223(02)00440-2

[13]. Deng, S.; Bai, R. Water Res. 2004, 38, 2424-2432.
http://dx.doi.org/10.1016/j.watres.2004.02.024
PMid:15142804

[14]. Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C. Chen, J. Chem. Phys. Lett. 1999, 303, 467-474.
http://dx.doi.org/10.1016/S0009-2614(99)00282-1

[15]. Volesky, B. Sorption and Biosorption. B. V. Sorbex, Inc. Montreal, Canada, 2003.

[16]. Hao, O. J.; Kim, H.; Chiang, P. C. Crit. Rev. Environ. Sci. Technol. 2000, 30, 449-505.
http://dx.doi.org/10.1080/10643380091184237

[17]. Lagergren S. Kungliga Svenska Vetenskapsakademiens, Handlingar 1898, 24(4), 1-39.

[18]. Ho, Y. S. Scientometrics 2004, 59, 171-177.
http://dx.doi.org/10.1023/B:SCIE.0000013305.99473.cf

[19]. Purkait, M. K.; Gusain, D. S.; DasGupta, S.; De, S. Separ. Sci. Technol. 2004, 39(10), 2419-2440.
http://dx.doi.org/10.1081/SS-120039347

[20]. Ho, Y. S.; McKay, G. Trans. IChemE. 1998, 76, 332-340.

[21]. Ho, Y. S; Wase, D. A. J.; Forster, C. F. Environ. Technol. 1996, 17, 71-77.
http://dx.doi.org/10.1080/09593331708616362

[22]. Weber, W. J.; Morris, J. C. J. Sanit. Eng. Div. Proceed. Am. Soc. Civ. Eng. 1963, 89, 31-39.

[23]. Ho, Y. S. Water Res. 2003, 37, 2323-2330.
http://dx.doi.org/10.1016/S0043-1354(03)00002-2

[24]. Hammud, H.; Lina, F. L.; Holail, H.; Mostafa, E. S. M. E. Int. J. Chem. 2011, 3(4), 147-163.

[25]. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361-1403.
http://dx.doi.org/10.1021/ja02242a004

[26]. Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T. Ind. Eng. Chem. 1966, 5, 212-219.

[27]. McKay, G. J. Chem. Technol. Biotechnol. 1982, 32, 759-772.

[28]. Weber, T. W.; Chakravorti, R. K. J. Am. Inst. Chem. Eng. 1974, 20, 228-238.
http://dx.doi.org/10.1002/aic.690200204

[29]. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385-470.

[30]. Ho, Y. S.; Porter, J. F.; McKay, G. Water Air Soil Pollut. 2002, 141, 1-4.
http://dx.doi.org/10.1023/A:1021304828010

[31]. Malkoc, E.; Nuhoglu, Y. Chem. Eng. Sci. 2006, 61, 4363-4372.
http://dx.doi.org/10.1016/j.ces.2006.02.005

[32]. Sivakumar, P.; Palanisamy, P. N. Indian J. Chem. Tech. 2009, 16, 301-303.

[33]. Yoon, Y. H.; Nelson, J. H. Am. Ind. Hyg. Assoc. J. 1984, 45, 509-516.
http://dx.doi.org/10.1080/15298668491400197
PMid:6475758

[34]. Yan, G. Y.; Viraraghavan, T.; Chen, M. Adsorp. Sci. Tech. 2001, 19, 25-43.
http://dx.doi.org/10.1260/0263617011493953

[35]. McKay, G. J. Chem. Technol. Biotechnol. 1982, 32, 759-772.

[36]. Ho, Y. S.; McKay, G. Can. J. Chem. Eng. 1998, 76, 822-826.
http://dx.doi.org/10.1002/cjce.5450760419

[37]. Ncibi, M. C. J. Hazard. Mater. 2008, 153, 207-212.
http://dx.doi.org/10.1016/j.jhazmat.2007.08.038
PMid:17900804

[38]. Kim, K. S.; Choi, H. C. Water Sci. Technol. 1998, 38(4-5), 95-101.
http://dx.doi.org/10.1016/S0273-1223(98)00502-2

[39]. Wang, H. J.; Zhou, A. L.; Peng, F.; Yu, H.; Chen, L. F. Mater. Sci. Eng. A 2007, 466, 201-206.
http://dx.doi.org/10.1016/j.msea.2007.02.097

[40]. Mohan, D.; Pittman, J. C. U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P. H.; Alexandre-Franco, M. F.; Gomez-Serrano, V.; Gong, H. J. Colloid Interface Sci. 2007, 310, 57-73.

[41]. Kul, A. R.; Koyuncu, H. J. Hazard. Mater. 2010, 179, 332-339.
http://dx.doi.org/10.1016/j.jhazmat.2010.03.009
PMid:20356674

[42]. Nadeem, R.; Nasir, M. H.; Hanif, M. S. Chem. Eng. J. 2009, 150, 40-48.
http://dx.doi.org/10.1016/j.cej.2008.12.001


How to cite


Hammud, H.; Chahine, M.; El-Hamaoui, B.; Hanifehpour, Y. Eur. J. Chem. 2013, 4(4), 425-433. doi:10.5155/eurjchem.4.4.425-433.776
Hammud, H.; Chahine, M.; El-Hamaoui, B.; Hanifehpour, Y. Lead uptake by new silica-carbon nanoparticles. Eur. J. Chem. 2013, 4(4), 425-433. doi:10.5155/eurjchem.4.4.425-433.776
Hammud, H., Chahine, M., El-Hamaoui, B., & Hanifehpour, Y. (2013). Lead uptake by new silica-carbon nanoparticles. European Journal of Chemistry, 4(4), 425-433. doi:10.5155/eurjchem.4.4.425-433.776
Hammud, Hassan, Mayssam Mostafa Chahine, Bassem El-Hamaoui, & Younes Hanifehpour. "Lead uptake by new silica-carbon nanoparticles." European Journal of Chemistry [Online], 4.4 (2013): 425-433. Web. 20 Nov. 2019
Hammud, Hassan, Chahine, Mayssam, El-Hamaoui, Bassem, AND Hanifehpour, Younes. "Lead uptake by new silica-carbon nanoparticles" European Journal of Chemistry [Online], Volume 4 Number 4 (31 December 2013)

DOI Link: https://doi.org/10.5155/eurjchem.4.4.425-433.776

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.