European Journal of Chemistry

Complex formation equilibria of imipenem with some transition metal ions. Ternary complex formation reactions involving Cu(II) with imipenem and various bio-relevant ligands



Main Article Content

Azza Abdelwahab Shoukry

Abstract

Imipenem is one of the β-lactam antibiotics (β-lactamase inhibitors), which are reported to be the most important class of drugs that are capable of inhibiting the bacterial enzyme to protect the β-lactam antibiotic from destruction. In view of the biological importance of imipenem as drug, the ligation behavior of imipenem is studied in order to get an idea about its potentiality towards some transition metals in in-vitro systems. The binary complex formation equilibria with the metal ions Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) were investigated potentiometrically. The effects of dioxane as a solvent, on the protonation constant of imipenem and the formation constants of Cu(II)-imipenem complexes were discussed. The ternary copper(II) complexes involving imipenem and various biologically relevant ligands containing different functional groups, as amino acids, amides, dicarboxylic acids and DNA constituents were investigated. The stability constants of the complexes are determined. The mechanisms of complex formation are speculatively discussed based on the calculated stability constant values. The ternary complexes are formed by simultaneous reactions. The concentration distributions of various species formed in solution were also evaluated as a function of pH.

4_4_379_387

icon graph This Abstract was viewed 1736 times | icon graph Article PDF downloaded 702 times

How to Cite
(1)
Shoukry, A. A. Complex Formation Equilibria of Imipenem With Some Transition Metal Ions. Ternary Complex Formation Reactions Involving Cu(II) With Imipenem and Various Bio-Relevant Ligands. Eur. J. Chem. 2013, 4, 379-387.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Beth, B. M.; Brian, S. K. Antimicrob. Agents Chemother. 2002, 46, 3978-3980.
http://dx.doi.org/10.1128/AAC.46.12.3978-3980.2002
PMCid:PMC132770

[2]. Shehata, M. R.; Shoukry, M. M.; Barakat, M. M. J. Coord. Chem. 2004, 57, 1369-1386.
http://dx.doi.org/10.1080/0095897042000261935

[3]. Sekhon, B. S. J. Pharm. Educ. Res. 2010, 1, 21-25.

[4]. El-Ajaily, M. M.; Abdlseed, F. A.; Ben-gweirif, S. E-J. Chem. 2007, 4, 461-466.

[5]. Sultana, N.; Arayne, M. S. Pak. J. Pharm Sci. 2007, 20, 305-310.
PMid:17604254

[6]. Arayne, S.; Sultana, N.; Haroon, U.; Mesaik, A. M. Bioinorg. Chem. Appl. 2009, 2009, 914105-914115.

[7]. Raman, N; Joseph, J.; Sakthivel, A.; Jeyamurugan, R. J. Chil. Chem. Soc. 2009, 54(4), 354-357.

[8]. Ming, L. J. Med. Res. Rev. 2003, 23, 697-762.
http://dx.doi.org/10.1002/med.10052
PMid:12939790

[9]. Iakovidis, I; Delimaris, I.; Piperakis, S. M. Mol. Bio. Intern. 2011, 594529-594542.
PMid:22091409 PMCid:PMC3195324

[10]. Melnik, M.; Potocnak, I.; Macaskova, L.; Miklos, D.; Holloway, C. E. Polyhedron 1996, 15, 2159-2164.
http://dx.doi.org/10.1016/0277-5387(95)00486-6

[11]. Garcia-Raso, A.; Fiol, J. J.; Adrover, B.; Tauler, P.; Pons, A.; Mata, I.; Espinosa, E.; Molins, E. Polyhedron 2003, 22, 3255-3264.
http://dx.doi.org/10.1016/j.poly.2003.07.013

[12]. Shoukry, A. A. J. Sol. Chem. 2011, 40, 1796-1818.
http://dx.doi.org/10.1007/s10953-011-9753-8

[13]. Shoukry, A. A. Trans. Metal Chem. 2005, 30, 814-827.
http://dx.doi.org/10.1007/s11243-005-5718-3

[14]. Shoukry, A. A.; Mohamed, M. M.; Shoukry, M. M. J. Sol. Chem. 2006, 35, 853-868.
http://dx.doi.org/10.1007/s10953-006-9032-2

[15]. Shoukry, M. M.; Shoukry, M. M.; Hafez, M. N. J. Coord. Chem. 2009, 63(4), 652-664.
http://dx.doi.org/10.1080/00958971003639766

[16]. Shoukry, A. A.; Brindell, M.; Van Eldik, R. Dalton Trans. 2007, 4169-4174.
http://dx.doi.org/10.1039/b706856e

[17]. Welcher, F. J. The Analytical Uses of Ethylenediamine Tetraacetic Acid. Van Nostand, Princeton 1965.

[18]. Vogel, A. E. Text Book of Quantitative Chemical Analysis, Longman, Harlow, 5th edn., Chap. 15, pp. 555, 1989.

[19]. Irving, M. H.; Miles, M. G.; Pettit, L. D. Anal. Chim. Acta. 1967, 38, 475-488.
http://dx.doi.org/10.1016/S0003-2670(01)80616-4

[20]. Stark, J. G.; Wallace, H. G. Chemistry Data Book Murray, London p. 75. 1975

[21]. Van Uitert, G. L; Hass, C. G. J. Am. Chem. Soc. 1971, 75, 451‐455.
http://dx.doi.org/10.1021/ja01098a057

[22]. Motekaitis, R. J.; Martell, A. E.; Nelson D. A. Inorg. Chem. 1984, 23, 275‐283.
http://dx.doi.org/10.1021/ic00171a005

[23]. Shoukry, A. A.; Al‐Mhayawi S. R. Eur. J. Chem. 2013, 4(3), 260‐267.
http://dx.doi.org/10.5155/eurjchem.4.3.260-267.800

[24]. Gans, P.; Sabatini, A.; Vacca, A. J. Inorg. Chim. Acta 1976, 18, 237‐239.
http://dx.doi.org/10.1016/S0020-1693(00)95610-X

[25]. Pettit, L. D. SPECIES, available program supplied to the authors, Academic Software, Old Farm, Timbly, Otley, 1993 York, LS21 2PW, UK

[26]. Shehata, M. R.; Shoukry, M. M.; Nasr, F. M.; Van. Eldik R. Dalton Trans. 2008, 779-786.

[27]. Cotton, F. A.; Wilkinson, G. Basic Inorganic Chemistry, Part 3. Wiley, New York, pp. 353, 1973

[28]. Shoukry, M. M.; Saeed, A.; Khairy, E. M. Trans. Metal Chem. 1989, 14, 347-350.
http://dx.doi.org/10.1007/BF01032507

[29]. Kramer-Schnabel, U.; Linder, P. W. Inorg. Chem. 1991, 30, 1248-1254.
http://dx.doi.org/10.1021/ic00006a017

[30]. Rees, D. C. J. Mol. Biol. 1980, 141, 323-326.
http://dx.doi.org/10.1016/0022-2836(80)90184-9

[31]. Rogersa, N. K.; Mooreb, G. R.; Sternberga, M. J. E. J. Mol. Biol. 1985, 182, 613-616.
http://dx.doi.org/10.1016/0022-2836(85)90248-7

[32]. Akerlof, G.; Short, O. A. J. Am. Chem. Soc. 1953, 75, 6357-6362.

[33]. Dogan, A.; Koseoglu, F.; Kılıc, E. Anal. Chem. 2001, 295, 237-239.

[34]. Sigel, H.; Martin, R. B. Chem. Rev. 1982, 82, 385-426.
http://dx.doi.org/10.1021/cr00050a003

[35]. Grenouillet, P.; Martin, R. P.; Rossi, A.; Ptak, M. Biochim. Biophys. Acta. 1973, 322, 185-194.
http://dx.doi.org/10.1016/0005-2795(73)90292-4

[36]. Shoukry, M. M.; Khairy, E. M.; Khalil, R. G. Trans. Met. Chem. 1997, 22, 465-470.
http://dx.doi.org/10.1023/A:1018555128102

[37]. Savago, I.; Kiss, A.; Farkas, E.; Sanna, D.; Marras, P.; Micerain, G. J. Inorg. Biochem. 1997, 65, 103-108
http://dx.doi.org/10.1016/S0162-0134(96)00094-3

[38]. Daniele, P. G.; Zerbinati, O.; Zelano, V.; Ostacoli, G. Dalton Trans. 1991, 2711-2715.
http://dx.doi.org/10.1039/dt9910002711

[39]. Sigel, H.; Massoud, S. S.; Corfu, N. A. J. Am. Chem. Soc. 1994, 116, 2958-2971.
http://dx.doi.org/10.1021/ja00086a028

[40]. Sigel, H. Angew. Chem. Int. Ed., 1975, 14, 394-402.
http://dx.doi.org/10.1002/anie.197503941

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).