European Journal of Chemistry 2017, 8(2), 112-118 | doi: https://doi.org/10.5155/eurjchem.8.2.112-118.1556 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons


Ana Maria Carvajal-Bernal (1) , Fernando Gomez-Granados (2) , Liliana Giraldo (3) , Juan Carlos Moreno-Pirajan (4,*)

(1) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(2) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(3) Laboratorio de Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, 451-124 CP 11321142, Bogotá, Colombia
(4) Laboratorio de Sólidos Porosos y Calorimetría, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Carrera 1 No 18 A-10, CP 110311484, Bogotá, Colombia
(*) Corresponding Author

Received: 19 Feb 2017 | Revised: 14 Mar 2017 | Accepted: 18 Mar 2017 | Published: 30 Jun 2017 | Issue Date: June 2017

Abstract


The Sips model for heterogeneous systems was used to describe the immersion enthalpy, maximum adsorption capacity at three temperatures, namely, 283, 291 and 308 K; and interactions between phenol aqueous solutions and activated carbon modified on its surfaces by impregnation with 6.0 M HNO3 and 3.0 M H3PO4 solutions. Activated carbon properties, such as porosity, Brunauer-Emmett-Teller (BET) surface area and volume and size pore distributions, were determined using N2 adsorption at 77 K. Surface area values were calculated to be between 469 and 864 m2/g. Also, the pH at the point of zero charge, acidity and total basicity for the activated carbons were obtained. The result showed that the Sips model in addition to describe the phenol concentration in equilibrium can be used to study immersion enthalpy when 1/ns is equal to 1.


Keywords


Phenol; Nitric acid; Sips model; Adsorption; Activated carbon; Immersion enthalpy

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.2.112-118.1556

Links for Article


| | | | | | |

| | | | | | |

| |

Related Articles




Article Metrics

This Abstract was viewed 2247 times | PDF Article downloaded 305 times

Funding information


Colciencias’s Doctoral Program, Colombia

Citations

/


[1]. Mengjiao Zhang, Liyun Zhu, Changhua He, Xiaojun Xu, Zhengyang Duan, Shuli Liu, Mingyao Song, Shumin Song, Jiemei Shi, Yu’e Li, Guangzhu Cao
Adsorption performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal by a β-cyclodextrin derivative
Environmental Science and Pollution Research  26(5), 5094, 2019
DOI: 10.1007/s11356-018-3989-4
/


[2]. Paola Rodríguez-Estupiñán, Liliana Giraldo, Juan Carlos Moreno-Piraján
Adsorption calorimetry
Journal of Thermal Analysis and Calorimetry  138(4), 2577, 2019
DOI: 10.1007/s10973-019-08549-2
/


[3]. Yanbo Zhou, Yonghua Hu, Weiwei Huang, Guang Cheng, Changzheng Cui, Jun Lu
A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A
Chemical Engineering Journal  341, 47, 2018
DOI: 10.1016/j.cej.2018.01.155
/


[4]. Xiaolin Liu, Yan Wang, Hui Ju, Fan Yang, Lin Zhang, Xuan Luo
Micro-mesoporous divinyl benzene-based polymer for ultrafast, effective and selective removal of cationic dyes
Materials Chemistry and Physics  255, 123564, 2020
DOI: 10.1016/j.matchemphys.2020.123564
/


[5]. Andrés I. Casoni, Pamela Mendioroz, María A. Volpe, Victoria S. Gutierrez
Magnetic amendment material based on bio-char from edible oil industry waste. Its performance on aromatic pollutant removal from water
Journal of Environmental Chemical Engineering  8(2), 103559, 2020
DOI: 10.1016/j.jece.2019.103559
/


[6]. Ana María Carvajal-Bernal, Fernando Gómez-Granados, Liliana Giraldo, Juan Carlos Moreno-Piraján, Marco Balsamo, Alessandro Erto
Kinetic and thermodynamic study of n-pentane adsorption on activated carbons modified by either carbonization or impregnation with ammonium hydroxide
Microporous and Mesoporous Materials  302, 110196, 2020
DOI: 10.1016/j.micromeso.2020.110196
/


References

[1]. Anisuzzaman, S.; Bono, A.; Krishnaiah, D.; Tan, Y. J. King Saud Univ. Eng. Sci. 2016, 28, 47-55.

[2]. Luo, Z.; Gao, M.; Yang, S.; Yang, Q. Colloids Surf. A 2015, 482, 222-230.
https://doi.org/10.1016/j.colsurfa.2015.05.014

[3]. Yang, G.; Chen, H.; Qin, H.; Feng, Y. Appl. Surface Sci. 2014, 293, 299-305.
https://doi.org/10.1016/j.apsusc.2013.12.155

[4]. Blanco, D.; Giraldo, L.; Moreno, J. Rev. Colomb. Quim. 2010, 39(2), 237-246.

[5]. Stoeckli, F.; Lopez-Ramon, M.; Moreno-Castilla, C. Langmuir 2001, 17, 3301-3306.
https://doi.org/10.1021/la0014407

[6]. Sips, R. J. Chem. Phys. 1948, 16, 490-495.
https://doi.org/10.1063/1.1746922

[7]. Wu, F. C.; Wu, P. H.; Tseng, R. L.; Juang, R. S. J. Taiwan Inst. Chem. Eng. 2014, 45, 2628-2639.

[8]. Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mat. 2007, 147, 401-411.
https://doi.org/10.1016/j.jhazmat.2007.01.023

[9]. Do, D. D. Adsorption Analysis: Equilibria and Kinetics. Series on Chemical Engineering 1998, 2, 49-148.
https://doi.org/10.1142/9781860943829

[10]. Giraldo, L.; Moreno-Pirajan, J. C. J. Anal. Appl. Pyrol. 2014, 106, 41-47.
https://doi.org/10.1016/j.jaap.2013.12.007

[11]. Silvestre-Albero, J.; Gomez de Salazar, C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Colloids Surf. A 2001, 187-188, 151-165.
https://doi.org/10.1016/S0927-7757(01)00620-3

[12]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Adsorption 2016, 22, 13-21.
https://doi.org/10.1007/s10450-015-9725-1

[13]. Carvajal-Bernal, A. M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Piraján, J. C. Microporous Mesoporous Mater. 2015, 209, 150-156.
https://doi.org/10.1016/j.micromeso.2015.01.052

[14]. Vargas, D. P.; Giraldo, L.; Moreno-Pirajan, J. C. J. Mol. Sci. 2012, 13, 8388-8397.
https://doi.org/10.3390/ijms13078388

[15]. Boehm, H. P. Carbon 1994, 32, 759-769.
https://doi.org/10.1016/0008-6223(94)90031-0

[16]. Qing-Song, L.; Tong, Z.; Peng, W.; Ji-Ping, J.; Nan, L. Chem. Eng. J. 2010, 157, 348-356.
https://doi.org/10.1016/j.cej.2009.11.013

[17]. Babic, B. M.; Milonjic, S. K.; Polovina, M. J.; Kaludierovic, B. V. Carbon 1999, 37, 477-481.
https://doi.org/10.1016/S0008-6223(98)00216-4

[18]. Moreno, J. C.; Giraldo, L. Review Sci. Inst. 2005, 76, 54-103.
https://doi.org/10.1063/1.1915522

[19]. Brunauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60(2), 309-319.
https://doi.org/10.1021/ja01269a023

[20]. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051-1069.
https://doi.org/10.1515/pac-2014-1117

[21]. Dubinin, M. M.; Radushkevich, L. V. Zentr. 1947, 1, 875-890.

[22]. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L Pierotti, R. A.; Rouquerol, J. Pure Appl. Chem. 1985, 57, 603-619.

[23]. Giles, C. H.; Mac Ewan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973-3993.
https://doi.org/10.1039/jr9600003973

[24]. Andreu, A.; Stoeckli, H. F.; Bradley, R. H. Carbon 2007, 45, 1854-1864.
https://doi.org/10.1016/j.carbon.2007.04.025

[25]. Aburub, A.; Wurster, D. E. J. Colloid Int. Sci. 2006, 296, 79-85.
https://doi.org/10.1016/j.jcis.2005.08.035

How to cite


Carvajal-Bernal, A.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J. Eur. J. Chem. 2017, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, A.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J. Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. Eur. J. Chem. 2017, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, A., Gomez-Granados, F., Giraldo, L., & Moreno-Pirajan, J. (2017). Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. European Journal of Chemistry, 8(2), 112-118. doi:10.5155/eurjchem.8.2.112-118.1556
Carvajal-Bernal, Ana, Fernando Gomez-Granados, Liliana Giraldo, & Juan Carlos Moreno-Pirajan. "Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons." European Journal of Chemistry [Online], 8.2 (2017): 112-118. Web. 1 Dec. 2020
Carvajal-Bernal, Ana, Gomez-Granados, Fernando, Giraldo, Liliana, AND Moreno-Pirajan, Juan. "Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons" European Journal of Chemistry [Online], Volume 8 Number 2 (30 June 2017)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.8.2.112-118.1556

| | | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2017, 8(2), 112-118 | doi: https://doi.org/10.5155/eurjchem.8.2.112-118.1556 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.