European Journal of Chemistry 2020, 11(2), 168-178 | doi: | Get rights and content

Issue cover



In silico screening for the interaction of small molecules with their targets and evaluation of therapeutic efficacy by free online tools

Praveen Kumar (1,*) orcid , Nayak Devappa Satyanarayan (2) orcid , Subba Rao Venkata Madhunapantula (3) orcid , Hulikal Shivashankara Santhosh Kumar (4) orcid , Rajeshwara Achur (5) orcid

(1) Department of Biochemistry, Kuvempu University, Jnana Sahyadri 577451, Shimoga, Karnataka, India
(2) Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur 577458, Chikkamagaluru Dist., Karnataka, India
(3) Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory, Department of Biochemistry, Jagadguru Sri Shivarathreeshwara Medical College, Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
(4) Department of Biotechnology, Kuvempu University, Jnana Sahyadri 577451, Shimoga, Karnataka, India
(5) Department of Biochemistry, Kuvempu University, Jnana Sahyadri 577451, Shimoga, Karnataka, India
(*) Corresponding Author

Received: 24 Jan 2020 | Revised: 17 Apr 2020 | Accepted: 21 Apr 2020 | Published: 30 Jun 2020 | Issue Date: June 2020


Pharmaceutical chemistry deals with the process of isolating organic compounds from natural sources or chemically synthesizing them in order to explore potential drugs. Drugs are small molecules, used to prevent or treat various diseases. Of several lead molecules, only few of them reach clinical trial phases and emerge as effective drugs, whereas the majority will be eliminated at different stages. On the other hand, due to the lack of proper identification of their pharmacokinetic properties and biological potential, many small molecules fail to reach this stage. This could be because of the fact that it is either time consuming and costly or there is full of uncertainty due to lack of analyses that are necessary for the confirmation. In the post-genomic era, computational methods have been implemented in almost all stages of drug research and development owing to the drastic increase in the available knowledge about small molecules and the target biomacromolecule. This includes identifying the suitable and specific targets for drug candidates, lead discovery, lead optimization and ultimately preclinical phases. In this context, numerous websites have become highly valuable and influence the drug development and discovery process. Here, we have attempted to bring together some of the online computational approaches and tools that are available to facilitate research efforts in the field of drug discovery and drug design. The output information from these tools is extremely helpful in selecting and deciding about the future direction or specific path needed to be followed by the researchers. These computational methods are indeed help to focus the intended research in the right direction. As detailed in this review, the information provided about the servers and methods should be useful throughout the process of screening of synthesized or chemical database originated small molecules to find the appropriate targets along with the active sites without depending on any commercial tools or time-consuming and costly assays. It should however be remembered that the bioinformatics-based prediction cannot completely replace the wet lab data of chemical compounds or specific assays.


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

European Journal of Chemistry


CASTp; ADMET; STRING; ChemAxon; Doxorubicin; MTiAutoDock

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.11.2.168-178.1962

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 898 times | icon graph PDF Article downloaded 394 times



[1]. Praveen Kumar, Santhosha Sangapurada Mahantheshappa, Sakthivel Balasubramaniyan, Nayak Devappa Satyanarayan, Rajeshwara Achur
Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis
European Journal of Chemistry  14(1), 30, 2023
DOI: 10.5155/eurjchem.14.1.30-38.2350


[1]. Fang, Y.; Ding, Y.; Feinstein, W. P.; Koppelman, D. M.; Moreno, J.; Jarrell, M.; Ramanujam, J.; Brylinski, M. PLoS ONE 2016, 11(7), e0158898.

[2]. Bode, J. W.; Reactor ChemAxon Ltd. Retrieved December 15, 2019, from

[3]. Cousins, K. R. Chemdraw Ultra 12. 0. Retrieved December 17, 2019 from

[4]. Smith, T. J. J. Mol. Graphics 1995, 13(2), 122-125.

[5]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv Drug Deliv. Rev. 2001, 46(1-3), 3-26.

[6]. Duffy, F. J.; Devocelle M.; Shields, D. C. Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein-Protein Interactions. In: Zhou P., Huang J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY, 2015.

[7]. Silverman, R. B.; Holladay, M. W. The organic chemistry of drug design and drug action. Academic press, ISBN 978-0-12-382030-3, 2016.

[8]. Kostal, J. Computational Chemistry in Predictive Toxicology: Status Quo et Quo Vadis? In Advances in Molecular Toxicology, Ed. J. Fishbein, Elsevier, San Diego, 2016, vol. 10, pp. 139-186.

[9]. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43(20), 3714-3717.

[10]. Edwards, R. A.; Olsen, G. J.; Maloy, S. R. Trends Microbiol. 2002, 10(2), 94-99.

[11]. Murtaza, S.; Altaf, A. A.; Hamayun, M.; Iftikhar, K.; Tahir, M. N.; Tariq, J.; Faiz, K. Eur. J. Chem. 2019, 10(4), 358-366.

[12]. Cheminformatics, M. Calculation of molecular properties and bioactivity score, Retrieved November 26, 2019, from

[13]. Norinder, U.; Bergstrom, C. A. ChemMedChem 2006, 1(9), 920-937.

[14]. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45(12), 2615-2623.

[15]. Ritchie, T. J.; Macdonald, S. J.; Peace, S.; Pickett, S. D.; Luscombe, C. N. Med. Chem. Comm. 2013, 4(4), 673-680.

[16]. Thakker, D. R.; Hoyer, D.; Cryan, J. F. Pharmacol. Therapeut. 2006, 109(3), 413-438.

[17]. Alavijeh, M. S.; Chishty, M.; Qaiser, M. Z.; Palmer, A. M. Neurotherapeutics 2005, 2(4), 554-571.

[18]. Baringhaus, K. H.; Matter, H.; Stengelin, S.; Kramer, W. J. Lipid Res. 1999, 40, 2158-2168.

[19]. Kwon, Y., Handbook of essential pharmacokinetics, pharmaco-dynamics and drug metabolism for industrial scientists. New York: Kluwer Academic/Plenum Publishers, 2001.

[20]. Jiang, P.; Li, Q.; Lu, J. IOP Conf. Ser.: Earth Environ. Sci. 2018, 178, 012020.

[21]. Kerns, E. H.; Di, L., Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization, Academic press, ISBN 978-0-12-369520-8, 2008.

[22]. Manallack, D. T. Perspec. Med. Chem. 2007, 1, 25-48.

[23]. Irwin, J. J.; Shoichet, B. K. J. Chem. Inform. Model. 2005, 45(1), 177-182.

[24]. Van De Waterbeemd, H.; Smith, D. A.; Beaumont, K.; Walker, D. K. J. Med. Chem. 2001, 44(9), 1313-1333.

[25]. Chan, O. H.; Stewart, B. H. Drug Discov. Today 1996, 1(11), 461-473.

[26]. Harris, D. A. Trends Biochem. Sci. 1993, 18(9), 354.

[27]. Baell, J. B.; Holloway, G. A. J. Med. Chem. 2010, 53(7), 2719-2740.

[28]. Daina, A.; Michielin, O.; Zoete, V. Sci. Reports 2017, 7, 42717.

[29]. Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. Bioinformatics 2019, 35(6), 1067-1069.

[30]. Dong, J.; Wang, N. N.; Yao, Z. J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A. P.; Cao, D. S. J. Cheminfor. 2018, 10(1), 29.

[31]. Pires, D. E.; Blundell, T. L.; Ascher, D. B. J. Med. Chem. 2015, 58(9), 4066-4072.

[32]. Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. Frontiers Pharmacol. 2017, 8, 889, 1-14.

[33]. Lee, S. K.; Park, S. H.; Lee, I. H.; No, K. T. PreAD-MET Ver. v2. 0, Seoul, Korea, Bioinformatics and Molecular Design Research, BMDRC, 2007.

[34]. Banerjee, P.; Eckert, A. O.; Schrey. A. K.; Preissner, R. Nucleic Acids Res. 2018, 46(W1), W257-W263.

[35]. Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C; Sayeeda, Z.; Assempour, N. Nucleic Acids Res. 2018, 46(D1), D1074-1082.

[36]. Dalvie, D.; Kalgutkar, A. S.; Chen, W. Drug Metabol. Rev. 2015, 47(1), 56-70.

[37]. Rydberg, P.; Gloriam, D. E.; Olsen, L. Bioinformatics 2010, 26(23), 2988-2989.

[38]. Rydberg, P.; Gloriam, D. E.; Zaretzki, J.; Breneman, C.; Olsen, L. ACS Med. Chem. Let. 2010, 1(3), 96-100.

[39]. Zhang, Y.; Chen, G.; Ma, H.; Guo, M. Molecules 2019, 24(1), 166, 19.

[40]. Rose, P. W.; Prlic, A.; Altunkaya, A.; Bi, C.; Bradley, A. R.; Christie, C. H.; Costanzo, L. D.; Duarte, J. M.; Dutta, S.; Feng, Z.; Green, R. K.; Goodsell, D. S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; Rose, A. S.; Shao, C.; Tao, Y. P.; Valasatava, Y.; Voigt, M.; Westbrook, J. D.; Woo, J.; Yang, H.; Young, J. Y.; Zardecki, C.; Berman, H. M.; Burley, S. K. Nucleic Acids Res. 2017, 45(D1), D271-D281.

[41]. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. Nucleic Acids Res. 2018, 46(W1), W363-W367.

[42]. Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. Nucleic Acids Res. 2006, 34(Suppl2), W116-W118.

[43]. Tian, W.; Chen, C.; Liang, J. Biophys. J. 2018, 114(3), (Suppl1), 50a.

[44]. Laskowski, R. A.; Hutchinson, E. G.; Michie, A. D.; Wallace, A. C.; Jones, M. L.; Thornton, J. M. Trends Biochem. Sci. 1997, 22(12), 488-490.

[45]. Basta, H. A.; Sgro, J. Y.; Palmenberg, A. C. Virology. 2014, 448, 176-184.

[46]. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Crystallog. 1993, 26(2), 283-291.

[47]. Mering, C. V.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. Nucleic Acids Res. 2003, 31(1), 258-261.

[48]. Grosdidier, A.; Zoete, V.; Michielin, O. Nucleic Acids Res. 2011, 39(Suppl2), W270-W277.

[49]. Kiss, R.; Sandor, M.; Szalai, F. A. J. Cheminform. 2012, 4, P17.

[50]. Labbe, C. M.; Rey, J.; Lagorce, D.; Vavrusa. M.; Becot, J.; Sperandio. O.; Villoutreix, B. O.; Tuffery, P.; Miteva, M. A. Nucleic Acids Res. 2015, 43(W1), W448-W454.

How to cite

Kumar, P.; Satyanarayan, N.; Madhunapantula, S.; Kumar, H.; Achur, R. Eur. J. Chem. 2020, 11(2), 168-178. doi:10.5155/eurjchem.11.2.168-178.1962
Kumar, P.; Satyanarayan, N.; Madhunapantula, S.; Kumar, H.; Achur, R. In silico screening for the interaction of small molecules with their targets and evaluation of therapeutic efficacy by free online tools. Eur. J. Chem. 2020, 11(2), 168-178. doi:10.5155/eurjchem.11.2.168-178.1962
Kumar, P., Satyanarayan, N., Madhunapantula, S., Kumar, H., & Achur, R. (2020). In silico screening for the interaction of small molecules with their targets and evaluation of therapeutic efficacy by free online tools. European Journal of Chemistry, 11(2), 168-178. doi:10.5155/eurjchem.11.2.168-178.1962
Kumar, Praveen, Nayak Devappa Satyanarayan, Subba Rao Venkata Madhunapantula, Hulikal Shivashankara Santhosh Kumar, & Rajeshwara Achur. "In silico screening for the interaction of small molecules with their targets and evaluation of therapeutic efficacy by free online tools." European Journal of Chemistry [Online], 11.2 (2020): 168-178. Web. 4 Jun. 2023
Kumar, Praveen, Satyanarayan, Nayak, Madhunapantula, Subba, Kumar, Hulikal, AND Achur, Rajeshwara. "In silico screening for the interaction of small molecules with their targets and evaluation of therapeutic efficacy by free online tools" European Journal of Chemistry [Online], Volume 11 Number 2 (30 June 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2020, 11(2), 168-178 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.