European Journal of Chemistry 2021, 12(1), 37-44 | doi: https://doi.org/10.5155/eurjchem.12.1.37-44.2038 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives


Santhosha Sangapurada Mahantheshappa (1) orcid , Harishkumar Shivanna (2) orcid , Nayak Devappa Satyanarayan (3,*) orcid

(1) Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur-577548, Chikkamagaluru Dt. Karnataka State, India
(2) Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur-577548, Chikkamagaluru Dt. Karnataka State, India
(3) Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur-577548, Chikkamagaluru Dt. Karnataka State, India
(*) Corresponding Author

Received: 31 Aug 2020 | Revised: 10 Jan 2021 | Accepted: 15 Jan 2021 | Published: 31 Mar 2021 | Issue Date: March 2021

Abstract


The synthesis, antimicrobial, and antioxidant activities of new quinoline analogs were carried out with the aim to find possible hits/leads that can be taken up for future drug development. A series of 2-amino-N’-((2-chloroquinolin-3-yl)methylene)acetohydrazide derivatives (6a-h) have been synthesized by reacting 2-chloro-N’-((2-chloroquinolin-3-yl)methylene)acetohydrazide (5a) and N’-((6-bromo-2-chloroquinolin-3-yl)methylene)-2-chloroacetohydrazide (5b) with secondary amines (Morpholine, diethylamine, piperidine and 1-methylpiperazine). The characterization was achieved by FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. The in silico ADMET studies of the synthesized molecules were analyzed for their drug likeliness and toxic properties. The ADMET study indicates that the synthesized compounds were found to be possessing reliable ADME properties and are nontoxic. The antimicrobial properties were tested against bacterial and fungal species with amoxicillin and fluconazole as standard drugs. The compounds 6a, 6c, 6e, and 6g exhibited good antibacterial potency against P. aeruginosa, and the compounds 6a, 6f, and 6h have shown good activity against E. coli with 1000 µg/mL. The compounds 6b, 6c, and 6e have moderate activity against fungal species C. oxysporum and the compounds 6c, 6e, 6f, 6g, and 6h have good activity against P. chrysogenum. Synthesized compounds were also tested for the DPPH· free radical scavenging activity to check the antioxidant potential, and the results revealed that the compounds 6a, 6b, 6c, and 6e have exhibited antioxidant potency than the remaining synthesized derivatives. The possible hits generated from biological activity could be taken for the generation of lead molecules for the drug discovery of antimicrobial and antioxidant entities from quinoline.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


DPPH; ADMET; Acetohydrazide; Antioxidant activity; Antimicrobial activity; 2-Chloroquinoline-3-carbaldehyde

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.1.37-44.2038

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1153 times | icon graph PDF Article downloaded 464 times


Citations

/


[1]. José Maurício dos Santos Filho, Marcos Venícius Batista de Souza Castro
Synthesis, structural characterization, and antimicrobial activity of novel ferrocene-N-acyl hydrazones designed by means of molecular simplification strategy Celebrating the 100th anniversary of the birth of Professor Paulo Freire
Journal of Organometallic Chemistry  979, 122488, 2022
DOI: 10.1016/j.jorganchem.2022.122488
/


[2]. José Maurício dos Santos Filho, Marcos Venícius Batista de Souza Castro
Synthesis, Structural Characterization, and Antimicrobial Activity of Novel Ferrocene-N-Acyl Hydrazones Designed by Means of Molecular Simplification Strategy Celebrating the 100th Anniversary of the Birth of Professor Paulo Freire
SSRN Electronic Journal   , , 2022
DOI: 10.2139/ssrn.4172056
/


[3]. Praveen Kumar, Santhosha Sangapurada Mahantheshappa, Sakthivel Balasubramaniyan, Nayak Devappa Satyanarayan, Rajeshwara Achur
Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis
European Journal of Chemistry  14(1), 30, 2023
DOI: 10.5155/eurjchem.14.1.30-38.2350
/


References


[1]. Cassir, N.; Rolain, J.-M.; Brouqui, P. Front. Microbiol. 2014, 5, 551, 1-15.
https://doi.org/10.3389/fmicb.2014.00551

[2]. Fournet, A.; Barrios, A. A.; Munoz, V.; Hocquemiller, R.; Cave, A.; Bruneton, J. Antimicrob. Agents Chemother. 1993, 37 (4), 859-863.
https://doi.org/10.1128/AAC.37.4.859

[3]. Lamazzi, C.; Leonce, S.; Pfeiffer, B.; Renard, P.; Guillaumet, G.; Rees, C. W.; Besson, T. Bioorg. Med. Chem. Lett. 2000, 10 (19), 2183-2185.
https://doi.org/10.1016/S0960-894X(00)00427-3

[4]. Harishkumar, S.; Satyanarayan, N. D.; Raghavendra, R.; Nandini, S.; Prabhudas, N.; H. Kiranmayee, P. Der Pharma Chem. 2018, 10(5), 49-56.

[5]. Upadhayaya, R. S.; Vandavasi, J. K.; Vasireddy, N. R.; Sharma, V.; Dixit, S. S.; Chattopadhyaya, J. Bioorg. Med. Chem. 2009, 17 (7), 2830-2841.
https://doi.org/10.1016/j.bmc.2009.02.026

[6]. Vlahov, R.; Parushev, St.; Vlahov, J.; Nickel, P.; Snatzke, G. Pure Appl. Chem. 1990, 62 (7), 1303-1306.
https://doi.org/10.1351/pac199062071303

[7]. Mahantheshappa, S. S.; Satyanarayan, N. D.; Mahadevan, K. M.; Bommegowda, Y. D.; Thangaraj, M. Int. J. Pharm. Pharm. Sci. 2016, 8 (11), 173-179.
https://doi.org/10.22159/ijpps.2016v8i11.14381

[8]. Pellerano, C.; Savini, L.; Massarelli, P.; Bruni, G.; Fiaschi, A. I. Farmaco 1990, 45 (3), 269-284.

[9]. Luo, Z. G.; Zeng, C. C.; Wang, F.; He, H. Q.; Wang, C. X.; Du, H. G.; Hu, L. M. Chem. Res. Chin. Univ. 2009, 25 (6), 841-845.

[10]. Lutz, R. E.; Bailey, P. S.; Clark, M. T.; Codington, J. F.; Deinet, A. J.; Freek, J. A.; Harnest, G. H.; Leake, N. H.; Martin, T. A.; Rowlett, R. J., Jr.; Salsbury, J. M.; Shearer, N. H., Jr.; Smith, J. D.; Wilson, J. W. J. Am. Chem. Soc. 1946, 68 (9), 1813-1831.
https://doi.org/10.1021/ja01213a042

[11]. Ahmed, N.; Brahmbhatt, K. G.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. Bioorg. Med. Chem. 2010, 18 (8), 2872-2879.
https://doi.org/10.1016/j.bmc.2010.03.015

[12]. Atwell, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1989, 32 (2), 396-401.
https://doi.org/10.1021/jm00122a018

[13]. Munawar, M.; Azad, M.; Athar, M.; Groundwater, P. Chem. Papers 2008, 62 (3), 288-293.
https://doi.org/10.2478/s11696-008-0025-z

[14]. Sriram, D.; Yogeeswari, P.; Devakaram, R. V. Bioorg. Med. Chem. 2006, 14 (9), 3113-3118.
https://doi.org/10.1016/j.bmc.2005.12.042

[15]. Narasimhan, B.; Judge, V.; Narang, R.; Ohlan, R.; Ohlan, S. Bioorg. Med. Chem. Lett. 2007, 17 (21), 5836-5845.
https://doi.org/10.1016/j.bmcl.2007.08.037

[16]. Duarte, C. D.; Tributino, J. L. M.; Lacerda, D. I.; Martins, M. V.; Alexandre-Moreira, M. S.; Dutra, F.; Bechara, E. J. H.; De-Paula, F. S.; Goulart, M. O. F.; Ferreira, J.; Calixto, J. B.; Nunes, M. P.; Bertho, A. L.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2007, 15 (6), 2421-2433.
https://doi.org/10.1016/j.bmc.2007.01.013

[17]. Komurcu, S. G.; Rollas, S.; Ulgen, M.; Gorrod, J. W.; Cevikbas, A. Boll. Chim. Farm. 1995, 134 (7), 375-379.

[18]. Ulgen, M.; Durgun, B. B.; Rollas, S.; Gorrod, J. W. Drug Metab. Drug Interact. 1997, 13 (4), 285-294.
https://doi.org/10.1515/DMDI.1997.13.4.285

[19]. Zhang, H.-Z.; Drewe, J.; Tseng, B.; Kasibhatla, S.; Cai, S. X. Bioorg. Med. Chem. 2004, 12 (13), 3649-3655.
https://doi.org/10.1016/j.bmc.2004.04.017

[20]. Reddy Nallamilli, S.; Ravi Kumar, V.; Himabindu, V.; Ram, B.; Rao Aalapati, S. Lett. Drug Design Discov. 2011, 8 (7), 626-632.
https://doi.org/10.2174/157018011796235167

[21]. Srinivasan, D.; Nathan, S.; Suresh, T.; Lakshmana Perumalsamy, P. J. Ethnopharm. 2001, 74 (3), 217-220.
https://doi.org/10.1016/S0378-8741(00)00345-7

[22]. Colbert, B.; Gonzales, L. Microbiology: Practical Applications and Infection Prevention, 1st edition, ISBN: 1-133-69364-4, Cengage learning, UK, 2015.

[23]. Sridhar, P.; Alagumuthu, M.; Arumugam, S.; Reddy, S. R. RSC Adv. 2016, 6 (69), 64460-64468.
https://doi.org/10.1039/C6RA09891F

[24]. Eswaran, S.; Adhikari, A. V.; Chowdhury, I. H.; Pal, N. K.; Thomas, K. D. Eur. J. Med. Chem. 2010, 45 (8), 3374-3383.
https://doi.org/10.1016/j.ejmech.2010.04.022

[25]. Hamama, W. S.; Ibrahim, M. E.; Gooda, A. A.; Zoorob, H. H. RSC Adv. 2018, 8 (16), 8484-8515.
https://doi.org/10.1039/C7RA11537G

[26]. Prakash Naik, H. R.; Bhojya Naik, H. S.; Ravikumar Naik, T. R.; Raghavendra, M.; Aravinda, T.; Lamani, D. S. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184 (2), 460-470.
https://doi.org/10.1080/10426500802176945

[27]. Bondock, S.; Gieman, H. Res. Chem. Intermed. 2014, 41 (11), 8381-8403.
https://doi.org/10.1007/s11164-014-1899-8

[28]. Meth-Cohn, O.; Narine, B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1520-1530.
https://doi.org/10.1039/p19810001520

[29]. Siddappa, M. K.; K, M.; Satyanarayan, N. D.; Yarbagi, K. M.; Jagadeesha, A. H.; Spencer, J. Cogent Chem. 2016, 2 (1), 1172542, 1-11.
https://doi.org/10.1080/23312009.2016.1172542

[30]. Sahu, R.; Thakur, D. S.; P, K. Int. J. Pharm. Sci. Nanotech. 1970, 5 (3), 1757-1764.
https://doi.org/10.37285/ijpsn.2012.5.3.2

[31]. Harishkumar, S.; Satyanarayan, N. D.; Santhosha, S. M. Asian J. Pharm. Clin. Res. 2018, 11 (4), 306-313.
https://doi.org/10.22159/ajpcr.2018.v11i2.22778

[32]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. J. Chem. Inf. Model. 2012, 52 (11), 3099-3105.
https://doi.org/10.1021/ci300367a

[33]. Lin, J. H.; Yamazaki, M. Clinical Pharmacokinetics 2003, 42 (1), 59-98.
https://doi.org/10.2165/00003088-200342010-00003

[34]. Mahantheshappa, S. S.; Khanapur, M.; Satyanarayan, N. D.; Shivanna, H. Inventi Impact: Med. Chem. 2016, 4, 121-127.

[35]. Nelson, D. L.; Cox, M. C.; W. Lehninger Principles of Biochemistry, 4th edition, ISBN 0-7167-4339-6, W. H. Freeman & Co., New York, New York, 2004.

[36]. Bhovi, M.G.; Gadaginamath, G.S. Indian J. Chem. B 2005, 44, 1068-1073.

[37]. Matin, M. M.; Bhattacharjee, S. C.; Chakraborty, P.; Alam, M. S. Carbohydr. Res. 2019, 485, 107812.
https://doi.org/10.1016/j.carres.2019.107812

[38]. Saundane, A. R.; Rudresh, K.; Satyanarayan, N. D.; Hiremath, S. P. Indian. J. Pharm. Sci. 1998, 60 (6), 379-383.

[39]. Laxmi, S.; Ankit, J.; Upendra, B. Asian. J. Pharm. Life. Sci. 2011, 1 (3), 232-238.

[40]. Manjunatha, K. S.; Satyanarayan, N. D.; Harishkumar, S. Int. J. Pharm. Pharm. Sci. 2016, 8 (10), 251-256.
https://doi.org/10.22159/ijpps.2016v8i10.13957

[41]. Venkatachalam, H.; Nayak, Y.; Jayashree, B. S. Int. J. Chem. Eng. Appl. 2012, 3 (3), 216-219.
https://doi.org/10.7763/IJCEA.2012.V3.189

[42]. Abosadiya, H. M. Eur. J. Chem. 2020, 11 (2), 156-159.
https://doi.org/10.5155/eurjchem.11.2.156-159.1981

[43]. Hacini, Z.; Khedja, F.; Habib, I.; Kendour, Z.; Debba, Z. Eur. J. Chem. 2018, 9 (4), 408-411.
https://doi.org/10.5155/eurjchem.9.4.408-411.1755

[44]. Srivastava, A.; Singh, R. M. Indian J. Chem. B 2005, 44, 1868-1875.

[45]. Matin, M.; Roshid, Md. H.; Bhattacharjee, S.; Azad, A. Med. Res. Arch. 2020, 8 (7), 1-13.
https://doi.org/10.18103/mra.v8i7.2165

[46]. Molyneaux, C.-A.; Krugliak, M.; Ginsburg, H.; Chibale, K. Biochem. Pharmacol. 2005, 71 (1-2), 61-68.
https://doi.org/10.1016/j.bcp.2005.10.023


How to cite


Mahantheshappa, S.; Shivanna, H.; Satyanarayan, N. Eur. J. Chem. 2021, 12(1), 37-44. doi:10.5155/eurjchem.12.1.37-44.2038
Mahantheshappa, S.; Shivanna, H.; Satyanarayan, N. Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives. Eur. J. Chem. 2021, 12(1), 37-44. doi:10.5155/eurjchem.12.1.37-44.2038
Mahantheshappa, S., Shivanna, H., & Satyanarayan, N. (2021). Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives. European Journal of Chemistry, 12(1), 37-44. doi:10.5155/eurjchem.12.1.37-44.2038
Mahantheshappa, Santhosha, Harishkumar Shivanna, & Nayak Devappa Satyanarayan. "Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives." European Journal of Chemistry [Online], 12.1 (2021): 37-44. Web. 30 Nov. 2023
Mahantheshappa, Santhosha, Shivanna, Harishkumar, AND Satyanarayan, Nayak. "Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives" European Journal of Chemistry [Online], Volume 12 Number 1 (31 March 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.1.37-44.2038


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(1), 37-44 | doi: https://doi.org/10.5155/eurjchem.12.1.37-44.2038 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.