European Journal of Chemistry

Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives

Crossmark


Main Article Content

Santhosha Sangapurada Mahantheshappa
Harishkumar Shivanna
Nayak Devappa Satyanarayan

Abstract

The synthesis, antimicrobial, and antioxidant activities of new quinoline analogs were carried out with the aim to find possible hits/leads that can be taken up for future drug development. A series of 2-amino-N’-((2-chloroquinolin-3-yl)methylene)acetohydrazide derivatives (6a-h) have been synthesized by reacting 2-chloro-N’-((2-chloroquinolin-3-yl)methylene)acetohydrazide (5a) and N’-((6-bromo-2-chloroquinolin-3-yl)methylene)-2-chloroacetohydrazide (5b) with secondary amines (Morpholine, diethylamine, piperidine and 1-methylpiperazine). The characterization was achieved by FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. The in silico ADMET studies of the synthesized molecules were analyzed for their drug likeliness and toxic properties. The ADMET study indicates that the synthesized compounds were found to be possessing reliable ADME properties and are nontoxic. The antimicrobial properties were tested against bacterial and fungal species with amoxicillin and fluconazole as standard drugs. The compounds 6a, 6c, 6e, and 6g exhibited good antibacterial potency against P. aeruginosa, and the compounds 6a, 6f, and 6h have shown good activity against E. coli with 1000 µg/mL. The compounds 6b, 6c, and 6e have moderate activity against fungal species C. oxysporum and the compounds 6c, 6e, 6f, 6g, and 6h have good activity against P. chrysogenum. Synthesized compounds were also tested for the DPPH· free radical scavenging activity to check the antioxidant potential, and the results revealed that the compounds 6a, 6b, 6c, and 6e have exhibited antioxidant potency than the remaining synthesized derivatives. The possible hits generated from biological activity could be taken for the generation of lead molecules for the drug discovery of antimicrobial and antioxidant entities from quinoline.


icon graph This Abstract was viewed 1312 times | icon graph Article PDF downloaded 571 times

How to Cite
(1)
Mahantheshappa, S. S.; Shivanna, H.; Satyanarayan, N. D. Synthesis, Antimicrobial, Antioxidant, and ADMET Studies of Quinoline Derivatives. Eur. J. Chem. 2021, 12, 37-44.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Cassir, N.; Rolain, J.-M.; Brouqui, P. Front. Microbiol. 2014, 5, 551, 1-15.
https://doi.org/10.3389/fmicb.2014.00551

[2]. Fournet, A.; Barrios, A. A.; Munoz, V.; Hocquemiller, R.; Cave, A.; Bruneton, J. Antimicrob. Agents Chemother. 1993, 37 (4), 859-863.
https://doi.org/10.1128/AAC.37.4.859

[3]. Lamazzi, C.; Leonce, S.; Pfeiffer, B.; Renard, P.; Guillaumet, G.; Rees, C. W.; Besson, T. Bioorg. Med. Chem. Lett. 2000, 10 (19), 2183-2185.
https://doi.org/10.1016/S0960-894X(00)00427-3

[4]. Harishkumar, S.; Satyanarayan, N. D.; Raghavendra, R.; Nandini, S.; Prabhudas, N.; H. Kiranmayee, P. Der Pharma Chem. 2018, 10(5), 49-56.

[5]. Upadhayaya, R. S.; Vandavasi, J. K.; Vasireddy, N. R.; Sharma, V.; Dixit, S. S.; Chattopadhyaya, J. Bioorg. Med. Chem. 2009, 17 (7), 2830-2841.
https://doi.org/10.1016/j.bmc.2009.02.026

[6]. Vlahov, R.; Parushev, St.; Vlahov, J.; Nickel, P.; Snatzke, G. Pure Appl. Chem. 1990, 62 (7), 1303-1306.
https://doi.org/10.1351/pac199062071303

[7]. Mahantheshappa, S. S.; Satyanarayan, N. D.; Mahadevan, K. M.; Bommegowda, Y. D.; Thangaraj, M. Int. J. Pharm. Pharm. Sci. 2016, 8 (11), 173-179.
https://doi.org/10.22159/ijpps.2016v8i11.14381

[8]. Pellerano, C.; Savini, L.; Massarelli, P.; Bruni, G.; Fiaschi, A. I. Farmaco 1990, 45 (3), 269-284.

[9]. Luo, Z. G.; Zeng, C. C.; Wang, F.; He, H. Q.; Wang, C. X.; Du, H. G.; Hu, L. M. Chem. Res. Chin. Univ. 2009, 25 (6), 841-845.

[10]. Lutz, R. E.; Bailey, P. S.; Clark, M. T.; Codington, J. F.; Deinet, A. J.; Freek, J. A.; Harnest, G. H.; Leake, N. H.; Martin, T. A.; Rowlett, R. J., Jr.; Salsbury, J. M.; Shearer, N. H., Jr.; Smith, J. D.; Wilson, J. W. J. Am. Chem. Soc. 1946, 68 (9), 1813-1831.
https://doi.org/10.1021/ja01213a042

[11]. Ahmed, N.; Brahmbhatt, K. G.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. Bioorg. Med. Chem. 2010, 18 (8), 2872-2879.
https://doi.org/10.1016/j.bmc.2010.03.015

[12]. Atwell, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1989, 32 (2), 396-401.
https://doi.org/10.1021/jm00122a018

[13]. Munawar, M.; Azad, M.; Athar, M.; Groundwater, P. Chem. Papers 2008, 62 (3), 288-293.
https://doi.org/10.2478/s11696-008-0025-z

[14]. Sriram, D.; Yogeeswari, P.; Devakaram, R. V. Bioorg. Med. Chem. 2006, 14 (9), 3113-3118.
https://doi.org/10.1016/j.bmc.2005.12.042

[15]. Narasimhan, B.; Judge, V.; Narang, R.; Ohlan, R.; Ohlan, S. Bioorg. Med. Chem. Lett. 2007, 17 (21), 5836-5845.
https://doi.org/10.1016/j.bmcl.2007.08.037

[16]. Duarte, C. D.; Tributino, J. L. M.; Lacerda, D. I.; Martins, M. V.; Alexandre-Moreira, M. S.; Dutra, F.; Bechara, E. J. H.; De-Paula, F. S.; Goulart, M. O. F.; Ferreira, J.; Calixto, J. B.; Nunes, M. P.; Bertho, A. L.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2007, 15 (6), 2421-2433.
https://doi.org/10.1016/j.bmc.2007.01.013

[17]. Komurcu, S. G.; Rollas, S.; Ulgen, M.; Gorrod, J. W.; Cevikbas, A. Boll. Chim. Farm. 1995, 134 (7), 375-379.

[18]. Ulgen, M.; Durgun, B. B.; Rollas, S.; Gorrod, J. W. Drug Metab. Drug Interact. 1997, 13 (4), 285-294.
https://doi.org/10.1515/DMDI.1997.13.4.285

[19]. Zhang, H.-Z.; Drewe, J.; Tseng, B.; Kasibhatla, S.; Cai, S. X. Bioorg. Med. Chem. 2004, 12 (13), 3649-3655.
https://doi.org/10.1016/j.bmc.2004.04.017

[20]. Reddy Nallamilli, S.; Ravi Kumar, V.; Himabindu, V.; Ram, B.; Rao Aalapati, S. Lett. Drug Design Discov. 2011, 8 (7), 626-632.
https://doi.org/10.2174/157018011796235167

[21]. Srinivasan, D.; Nathan, S.; Suresh, T.; Lakshmana Perumalsamy, P. J. Ethnopharm. 2001, 74 (3), 217-220.
https://doi.org/10.1016/S0378-8741(00)00345-7

[22]. Colbert, B.; Gonzales, L. Microbiology: Practical Applications and Infection Prevention, 1st edition, ISBN: 1-133-69364-4, Cengage learning, UK, 2015.

[23]. Sridhar, P.; Alagumuthu, M.; Arumugam, S.; Reddy, S. R. RSC Adv. 2016, 6 (69), 64460-64468.
https://doi.org/10.1039/C6RA09891F

[24]. Eswaran, S.; Adhikari, A. V.; Chowdhury, I. H.; Pal, N. K.; Thomas, K. D. Eur. J. Med. Chem. 2010, 45 (8), 3374-3383.
https://doi.org/10.1016/j.ejmech.2010.04.022

[25]. Hamama, W. S.; Ibrahim, M. E.; Gooda, A. A.; Zoorob, H. H. RSC Adv. 2018, 8 (16), 8484-8515.
https://doi.org/10.1039/C7RA11537G

[26]. Prakash Naik, H. R.; Bhojya Naik, H. S.; Ravikumar Naik, T. R.; Raghavendra, M.; Aravinda, T.; Lamani, D. S. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184 (2), 460-470.
https://doi.org/10.1080/10426500802176945

[27]. Bondock, S.; Gieman, H. Res. Chem. Intermed. 2014, 41 (11), 8381-8403.
https://doi.org/10.1007/s11164-014-1899-8

[28]. Meth-Cohn, O.; Narine, B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1520-1530.
https://doi.org/10.1039/p19810001520

[29]. Siddappa, M. K.; K, M.; Satyanarayan, N. D.; Yarbagi, K. M.; Jagadeesha, A. H.; Spencer, J. Cogent Chem. 2016, 2 (1), 1172542, 1-11.
https://doi.org/10.1080/23312009.2016.1172542

[30]. Sahu, R.; Thakur, D. S.; P, K. Int. J. Pharm. Sci. Nanotech. 1970, 5 (3), 1757-1764.
https://doi.org/10.37285/ijpsn.2012.5.3.2

[31]. Harishkumar, S.; Satyanarayan, N. D.; Santhosha, S. M. Asian J. Pharm. Clin. Res. 2018, 11 (4), 306-313.
https://doi.org/10.22159/ajpcr.2018.v11i2.22778

[32]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. J. Chem. Inf. Model. 2012, 52 (11), 3099-3105.
https://doi.org/10.1021/ci300367a

[33]. Lin, J. H.; Yamazaki, M. Clinical Pharmacokinetics 2003, 42 (1), 59-98.
https://doi.org/10.2165/00003088-200342010-00003

[34]. Mahantheshappa, S. S.; Khanapur, M.; Satyanarayan, N. D.; Shivanna, H. Inventi Impact: Med. Chem. 2016, 4, 121-127.

[35]. Nelson, D. L.; Cox, M. C.; W. Lehninger Principles of Biochemistry, 4th edition, ISBN 0-7167-4339-6, W. H. Freeman & Co., New York, New York, 2004.

[36]. Bhovi, M.G.; Gadaginamath, G.S. Indian J. Chem. B 2005, 44, 1068-1073.

[37]. Matin, M. M.; Bhattacharjee, S. C.; Chakraborty, P.; Alam, M. S. Carbohydr. Res. 2019, 485, 107812.
https://doi.org/10.1016/j.carres.2019.107812

[38]. Saundane, A. R.; Rudresh, K.; Satyanarayan, N. D.; Hiremath, S. P. Indian. J. Pharm. Sci. 1998, 60 (6), 379-383.

[39]. Laxmi, S.; Ankit, J.; Upendra, B. Asian. J. Pharm. Life. Sci. 2011, 1 (3), 232-238.

[40]. Manjunatha, K. S.; Satyanarayan, N. D.; Harishkumar, S. Int. J. Pharm. Pharm. Sci. 2016, 8 (10), 251-256.
https://doi.org/10.22159/ijpps.2016v8i10.13957

[41]. Venkatachalam, H.; Nayak, Y.; Jayashree, B. S. Int. J. Chem. Eng. Appl. 2012, 3 (3), 216-219.
https://doi.org/10.7763/IJCEA.2012.V3.189

[42]. Abosadiya, H. M. Eur. J. Chem. 2020, 11 (2), 156-159.
https://doi.org/10.5155/eurjchem.11.2.156-159.1981

[43]. Hacini, Z.; Khedja, F.; Habib, I.; Kendour, Z.; Debba, Z. Eur. J. Chem. 2018, 9 (4), 408-411.
https://doi.org/10.5155/eurjchem.9.4.408-411.1755

[44]. Srivastava, A.; Singh, R. M. Indian J. Chem. B 2005, 44, 1868-1875.

[45]. Matin, M.; Roshid, Md. H.; Bhattacharjee, S.; Azad, A. Med. Res. Arch. 2020, 8 (7), 1-13.
https://doi.org/10.18103/mra.v8i7.2165

[46]. Molyneaux, C.-A.; Krugliak, M.; Ginsburg, H.; Chibale, K. Biochem. Pharmacol. 2005, 71 (1-2), 61-68.
https://doi.org/10.1016/j.bcp.2005.10.023

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).