

Synthesis, antimicrobial, and antitubercular evaluation of new Schiff bases with in silico ADMET and molecular docking studies
Sakshith Raghavendra Prasad (1)




(1) Department of Pharmaceutical Chemistry, National College of Pharmacy, Balaraj Urs Road, Shivamogga-577201, Karnataka, India
(2) Department of Pharmaceutical Chemistry, Kuvempu University, Post-Graduate Centre, Kadur-577548, Karnataka, India
(3) Department of Pharmaceutical Chemistry, National College of Pharmacy, Balaraj Urs Road, Shivamogga-577201, Karnataka, India
(4) Department of Post-Graduation Studies and Research in Microbiology, Jnanasahyadri, Kuvempu University, Shankaraghatta-577451, India
(*) Corresponding Author
Received: 18 Nov 2021 | Revised: 31 Dec 2021 | Accepted: 03 Jan 2022 | Published: 31 Mar 2022 | Issue Date: March 2022
Abstract
Schiff bases are a proven moiety in antitubercular drug discovery and the antitubercular drug development. Drug discovery is a never-ending process due to evolving drug resistance by the bacteria, as a result, there is a need of developing new antitubercular drugs. In this continuous process of antitubercular drug discovery, new series of Schiff bases are synthesized using quinoline carbohydrazide upon coupling with different aldehydes in ethanolic media through multistep synthesis. These synthesized compounds were purified and characterized by different spectroscopic techniques. The molecules were in vitro screened for antifungal and antibacterial potential by Agar well diffusion assay, antitubercular activity by using microplate Alamar blue assay, and an attempt has been made to study the in-silico relationship between new Schiff base derivatives 4a-f and the crystal structure of M. tuberculosis (5V3Y) protein by molecular docking studies. Synthesized compounds 4a-f show good interaction with the crystal structure of M. tuberculosis protein (5V3Y) and fulfill ADMET characteristics in silico experiments. Among the compounds tested, compound 4d was found to be active against bacteria and fungi. Compound 4b was found to be sensitive against M. tuberculosis at 50 µg/mL concentration.
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.13.1.109-116.2216
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Kuvempu University, Shankaraghatta-577451, India.
References
[1]. Alsayed, S. S. R.; Lun, S.; Bailey, A. W.; Suri, A.; Huang, C.-C.; Mocerino, M.; Payne, A.; Sredni, S. T.; Bishai, W. R.; Gunosewoyo, H. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. RSC Adv. 2021, 11, 15497-15511.
https://doi.org/10.1039/D0RA10728J
[2]. Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K. E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E. A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G. K. H.; Pasipanodya, J. G.; Rodrigues, C.; Clark, T. G.; Sirgel, F. A.; Esmail, A.; Lin, H.-H.; Atre, S. R.; Schaaf, H. S.; Chang, K. C.; Lange, C.; Nahid, P.; Udwadia, Z. F.; Horsburgh, C. R., Jr; Churchyard, G. J.; Menzies, D.; Hesseling, A. C.; Nuermberger, E.; McIlleron, H.; Fennelly, K. P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C. M.; Padayatchi, N.; Warren, R. M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5 (4), 291-360.
https://doi.org/10.1016/S2213-2600(17)30079-6
[3]. Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Ann. Chem. Pharm. 1864, 131, 118-119.
https://doi.org/10.1002/jlac.18641310113
[4]. Bharti, S. K.; Nath, G.; Tilak, R.; Singh, S. K. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur. J. Med. Chem. 2010, 45, 651-660.
https://doi.org/10.1016/j.ejmech.2009.11.008
[5]. Cordeiro, R.; Kachroo, M. Synthesis and biological evaluation of anti-tubercular activity of Schiff bases of 2-Amino thiazoles. Bioorg. Med. Chem. Lett. 2020, 30, 127655.
https://doi.org/10.1016/j.bmcl.2020.127655
[6]. Guo, S.; Song, Y.; Huang, Q.; Yuan, H.; Wan, B.; Wang, Y.; He, R.; Beconi, M. G.; Franzblau, S. G.; Kozikowski, A. P. Identification, synthesis, and pharmacological evaluation of tetrahydroindazole based ligands as novel antituberculosis agents. J. Med. Chem. 2010, 53, 649-659.
https://doi.org/10.1021/jm901235p
[7]. Santoshkumar, S.; Satyanarayana, N. D.; Anantacharya, R.; Sameer, P. Synthesis, antimicrobial, antitubercular and cheminformatic studies of 2-(1-benzofuran-2-yl)-N'-[(3Z)-2-oxo-1, 2-dihydro-3H-indol-3-ylidene] quinoline-4-carbohydrazide and its derivatives. Int. J. Pharm. Pharm. Sci. 2017, 9, 260-267.
https://doi.org/10.22159/ijpps.2017v9i5.17564
[8]. Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009, 9, 1648-1654.
https://doi.org/10.2174/138955709791012247
[9]. Tseng, C.-H.; Tung, C.-W.; Wu, C.-H.; Tzeng, C.-C.; Chen, Y.-H.; Hwang, T.-L.; Chen, Y.-L. Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 2017, 22, 1001.
https://doi.org/10.3390/molecules22061001
[10]. Gaber, A.; Alsanie, W. F.; Alhomrani, M.; Alamri, A. S.; El-Deen, I. M.; Refat, M. S. Synthesis of 1-[(Aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic Acid Derivatives and Their Breast Anticancer Activity. Crystals (Basel) 2021, 11, 571.
https://doi.org/10.3390/cryst11050571
[11]. Salve, P. S.; Alegaon, S. G.; Sriram, D. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 1859-1866.
https://doi.org/10.1016/j.bmcl.2017.02.031
[12]. Hunter, A. D. ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0. J. Chem. Educ. 1997, 74, 905.
https://doi.org/10.1021/ed074p905
[13]. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605-1612.
https://doi.org/10.1002/jcc.20084
[14]. Dallakyan, S.; Olson, A. J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243-250.
https://doi.org/10.1007/978-1-4939-2269-7_19
[15]. Kemmish, H.; Fasnacht, M.; Yan, L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One 2017, 12, e0177923.
https://doi.org/10.1371/journal.pone.0177923
[16]. Harishkumar, S.; Satyanarayan, N. D.; Santhosha, S. M. Antiproliferative and in silico admet study of new 4-(piperidin-1-ylmethyl)-2- (thiophen-2-yl) quinoline analogues. Asian J. Pharm. Clin. Res. 2018, 11, 306-313.
https://doi.org/10.22159/ajpcr.2018.v11i4.24147
[17]. Aggarwal, A.; Parai, M. K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N. K.; Galaviz, S.; Dhakal, R. C.; Shrestha, R.; Wakabayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G. T.; Rubin, E. J.; Ioerger, T. R.; Sirgel, F. A.; van der Merwe, R.; van Helden, P. D.; Keller, P.; Böttger, E. C.; Karakousis, P. C.; Lenaerts, A. J.; Sacchettini, J. C. Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13. Cell 2017, 170, 249-259.e25.
https://doi.org/10.1016/j.cell.2017.06.025
[18]. PyMOL. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. http://www.pymol.org/pymol (accessed January 2, 2022).
[19]. Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J. Chem. Inf. Model. 2018, 58, 1697-1706.
https://doi.org/10.1021/acs.jcim.8b00312
[20]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099-3105.
https://doi.org/10.1021/ci300367a
[21]. Lin, J. H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: clinical implications: Clinical implications. Clin. Pharmacokinet. 2003, 42, 59-98.
https://doi.org/10.2165/00003088-200342010-00003
[22]. Arthington-Skaggs, B. A.; Motley, M.; Warnock, D. W.; Morrison, C. J. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J. Clin. Microbiol. 2000, 38, 2254-2260.
https://doi.org/10.1128/JCM.38.6.2254-2260.2000
[23]. Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M. A.; Stoeckli-Evans, H.; Hostettmann, K. Antibacterial phloroglucinols and flavonoids from Hypericum brasiliense. Phytochemistry 1995, 40, 1447-1452.
https://doi.org/10.1016/0031-9422(95)00507-4
[24]. MacLowry, J. D.; Jaqua, M. J.; Selepak, S. T. Detailed methodology and implementation of a semiautomated serial dilution microtechnique for antimicrobial susceptibility testing. Appl. Microbiol. 1970, 20, 46-53.
https://doi.org/10.1128/am.20.1.46-53.1970
[25]. Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S. Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 2001, 76, 93-98.
https://doi.org/10.1016/S0378-8741(01)00214-8
[26]. Maria, C. S. L.; Marcus, V. N.; de Souza. Alessandra, C. P.; Marcelle de, L. F.; Raoni S. B. G.; Thais Cristina, M. N.; Monica, A. P. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC 2007, 2007, 181-191.
https://doi.org/10.3998/ark.5550190.0008.f18
[27]. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337-341.
https://doi.org/10.1016/j.ddtec.2004.11.007
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.13.1.109-116.2216

















European Journal of Chemistry 2022, 13(1), 109-116 | doi: https://doi.org/10.5155/eurjchem.13.1.109-116.2216 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.