European Journal of Chemistry 2023, 14(1), 30-38 | doi: https://doi.org/10.5155/eurjchem.14.1.30-38.2350 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis


Praveen Kumar (1,*) orcid , Santhosha Sangapurada Mahantheshappa (2) orcid , Sakthivel Balasubramaniyan (3) orcid , Nayak Devappa Satyanarayan (4) orcid , Rajeshwara Achur (5) orcid

(1) Department of Biochemistry, Kuvempu University, Jnana Sahyadri-577451, Shimoga, Karnataka, India
(2) Department of Pharmaceutical Chemistry, Kuvempu University Post Graduate Centre, Kadur-577458, Chikkamagaluru district, Karnataka-577458, India
(3) Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirapalli-62024, Tamilnadu, India
(4) Department of Pharmaceutical Chemistry, Kuvempu University Post Graduate Centre, Kadur-577458, Chikkamagaluru district, Karnataka-577458, India
(5) Department of Biochemistry, Kuvempu University, Jnana Sahyadri-577451, Shimoga, Karnataka, India
(*) Corresponding Author

Received: 24 Sep 2022 | Revised: 30 Oct 2022 | Accepted: 08 Nov 2022 | Published: 31 Mar 2023 | Issue Date: March 2023

Abstract


The novel coronavirus (COVID-19) has triggered a major human turmoil worldwide by posing challenges regarding infection prevention, disease diagnosis, and treatment. Several drugs including remdesivir (RDV), hydroxychloroquine (HCQ), and others are being used to treat COVID-19, although these are not specifically proven drugs. Thus, it is very critical to understand COVID-19 drug targets and their interactions with candidate drugs. Here, we attempted in silico screening of ten quinoline analogs (Q1-Q10) against the five main proteases of SARS-CoV-2 by docking and dynamics analysis. The prediction of the ADMET profile showed that the best docked quinolines are safe and possess drug-like properties. The molecular interaction and binding affinity of these small molecules were determined with respect to the five protease (Mpro) targets of SARS-CoV-2 (PDB ID: 6LU7, 6W63, 6M03, 6Y84 and 6YB7). The study indicated that the quinoline ligands Q4, Q5, Q6, Q7, Q8, Q9, and Q10as probable inhibitors against SARS-CoV-2 Mpro and showed favorable binding interaction with the amino acid Glu166 of 6Y84, 6LU7and 6M03. Furthermore, Q9 has a highly significant docking score and binding affinity with all fiveCOVID-19 receptors having a minimum of two H-bonds, which is remarkable compared to HCQ, RDV, and other quinolines. The dynamics simulation analysis of this potent drug candidate Q9 with 6LU7 indicated high stability of the complex. In conclusion, our findings indicate that all of these quinolines in general possess good binding affinity and Q9 can serve as a good quinoline scaffold for the design of new antiviral agents to target the active site of SARS-CoV-2 MPro.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


QikProp; Quinoline; COVID-19; Remdesivir; SARS-CoV-2; Hydroxychloroquine

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.1.30-38.2350

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 157 times | icon graph PDF Article downloaded 42 times


References


[1]. Yang, P.; Ding, Y.; Xu, Z.; Pu, R.; Li, P.; Yan, J.; Liu, J.; Meng, F.; Huang, L.; Shi, L.; Jiang, T.; Qin, E.; Zhao, M.; Zhang, D.; Zhao, P.; Yu, L.; Wang, Z.; Hong, Z.; Xiao, Z.; Xi, Q.; Zhao, D.; Yu, P.; Zhu, C.; Chen, Z.; Zhang, S.; Ji, J.; Cao, G.; Wang, F. Epidemiological and Clinical Features of COVID-19 Patients with and without Pneumonia in Beijing, China. BioRxiv, 2020. https://doi.org/10.1101/2020.02.28.20028068.
https://doi.org/10.1101/2020.02.28.20028068

[2]. Weiner, D. L.; Balasubramaniam, V.; Shah, S. I.; Javier, J. R.; Pediatric Policy Council. COVID-19 Impact on Research, Lessons Learned from COVID-19 Research, Implications for Pediatric Research. Pediatr. Res. 2020, 88 (2), 148-150.
https://doi.org/10.1038/s41390-020-1006-3

[3]. Smyth, T.; Ramachandran, V. N.; Smyth, W. F. A Study of the Antimicrobial Activity of Selected Naturally Occurring and Synthetic Coumarins. Int. J. Antimicrob. Agents 2009, 33 (5), 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022

[4]. Yazdany, J.; Kim, A. H. J. Use of Hydroxychloroquine and Chloroquine during the COVID-19 Pandemic: What Every Clinician Should Know. Ann. Intern. Med. 2020, 172 (11), 754-755.
https://doi.org/10.7326/M20-1334

[5]. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-NCoV) in Vitro. Cell Res. 2020, 30 (3), 269-271.
https://doi.org/10.1038/s41422-020-0282-0

[6]. Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine Phosphate Has Shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies. Biosci. Trends 2020, 14 (1), 72-73.
https://doi.org/10.5582/bst.2020.01047

[7]. Li, G.; De Clercq, E. Therapeutic Options for the 2019 Novel Coronavirus (2019-NCoV). Nat. Rev. Drug Discov. 2020, 19 (3), 149-150.
https://doi.org/10.1038/d41573-020-00016-0

[8]. Vijayalakshmi, P.; Daisy, P. Effective Interaction Studies for Inhibition of DNA Ligase Protein from Staphylococcus Aureus. J. Recept. Signal Transduct. Res. 2015, 35 (1), 15-25.
https://doi.org/10.3109/10799893.2014.926924

[9]. Choy, K.-T.; Wong, A. Y.-L.; Kaewpreedee, P.; Sia, S. F.; Chen, D.; Hui, K. P. Y.; Chu, D. K. W.; Chan, M. C. W.; Cheung, P. P.-H.; Huang, X.; Peiris, M.; Yen, H.-L. Remdesivir, Lopinavir, Emetine, and Homoharring tonine Inhibit SARS-CoV-2 Replication in Vitro. Antiviral Res. 2020, 178 (104786), 104786.
https://doi.org/10.1016/j.antiviral.2020.104786

[10]. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W.; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382 (8), 727-733.
https://doi.org/10.1056/NEJMoa2001017

[11]. Kwiek, J. J.; Haystead, T. A. J.; Rudolph, J. Kinetic Mechanism of Quinone Oxidoreductase 2 and Its Inhibition by the Antimalarial Quinolines. Biochemistry 2004, 43 (15), 4538-4547.
https://doi.org/10.1021/bi035923w

[12]. Devaux, C. A.; Rolain, J.-M.; Colson, P.; Raoult, D. New Insights on the Antiviral Effects of Chloroquine against Coronavirus: What to Expect for COVID-19? Int. J. Antimicrob. Agents 2020, 55 (5), 105938.
https://doi.org/10.1016/j.ijantimicag.2020.105938

[13]. Tsiang, H.; Superti, F. Ammonium Chloride and Chloroquine Inhibit Rabies Virus Infection in Neuroblastoma Cells. Arch. Virol. 1984, 81 (3-4), 377-382.
https://doi.org/10.1007/BF01310010

[14]. Kronenberger, P.; Vrijsen, R.; Boeyé, A. Chloroquine Induces Empty Capsid Formation during Poliovirus Eclipse. J. Virol. 1991, 65 (12), 7008-7011.
https://doi.org/10.1128/jvi.65.12.7008-7011.1991

[15]. Savarino, A.; Gennero, L.; Sperber, K.; Boelaert, J. R. The Anti-HIV-1 Activity of Chloroquine. J. Clin. Virol. 2001, 20 (3), 131-135.
https://doi.org/10.1016/S1386-6532(00)00139-6

[16]. Bishop, N. E. Examination of Potential Inhibitors of Hepatitis A Virus Uncoating. Intervirology 1998, 41 (6), 261-271.
https://doi.org/10.1159/000024948

[17]. Delvecchio, R.; Higa, L. M.; Pezzuto, P.; Valadão, A. L.; Garcez, P. P.; Monteiro, F. L.; Loiola, E. C.; Dias, A. A.; Silva, F. J. M.; Aliota, M. T.; Caine, E. A.; Osorio, J. E.; Bellio, M.; O'Connor, D. H.; Rehen, S.; de Aguiar, R. S.; Savarino, A.; Campanati, L.; Tanuri, A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses 2016, 8 (12), 322. https://doi.org/10.3390/v8120322.
https://doi.org/10.3390/v8120322

[18]. Dowall, S. D.; Bosworth, A.; Watson, R.; Bewley, K.; Taylor, I.; Rayner, E.; Hunter, L.; Pearson, G.; Easterbrook, L.; Pitman, J.; Hewson, R.; Carroll, M. W. Chloroquine Inhibited Ebola Virus Replication in Vitro but Failed to Protect against Infection and Disease in the in Vivo Guinea Pig Model. J. Gen. Virol. 2015, 96 (12), 3484-3492.
https://doi.org/10.1099/jgv.0.000309

[19]. Savarino, A.; Boelaert, J. R.; Cassone, A.; Majori, G.; Cauda, R. Effects of Chloroquine on Viral Infections: An Old Drug against Today's Diseases? Lancet Infect. Dis. 2003, 3 (11), 722-727.
https://doi.org/10.1016/S1473-3099(03)00806-5

[20]. Keyaerts, E.; Li, S.; Vijgen, L.; Rysman, E.; Verbeeck, J.; Van Ranst, M.; Maes, P. Antiviral Activity of Chloroquine against Human Coronavirus OC43 Infection in Newborn Mice. Antimicrob. Agents Chemother. 2009, 53 (8), 3416-3421.
https://doi.org/10.1128/AAC.01509-08

[21]. Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A Systematic Review on the Efficacy and Safety of Chloroquine for the Treatment of COVID-19. J. Crit. Care 2020, 57, 279-283.
https://doi.org/10.1016/j.jcrc.2020.03.005

[22]. Fadelelmoula, T. Efficacy and Safety of Hydroxychloroquine in Treating COVID-19 Pneumonia: Uncertainty of Data and Changing Treatment Protocols. J. Lung Pulm. Respir. Res. 2020, 7 (2), 62-65.
https://doi.org/10.15406/jlprr.2020.07.00228

[23]. Wu, T.; Li, Y.; Liu, G.; Li, J.; Wang, L.; Du, L.; Chinese Clinical Registry. Chinese Clinical Trial Registry: Mission, Responsibility and Operation: Chinese Clinical Trial Registry: Mission, Responsibility and Operation. J. Evid. Based Med. 2011, 4 (3), 165-167.
https://doi.org/10.1111/j.1756-5391.2011.01137.x

[24]. Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a Less Toxic Derivative of Chloroquine, Is Effective in Inhibiting SARS-CoV-2 Infection in Vitro. Cell Discov. 2020, 6 (1), 16.
https://doi.org/10.1038/s41421-020-0156-0

[25]. Khuroo, M. S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: a critical appraisal. Int. J. Antimicrob. Agents 2020, 56, 106101.
https://doi.org/10.1016/j.ijantimicag.2020.106101

[26]. Rodriguez-Valero, N.; Vera, I.; Torralvo, M. R.; De Alba, T.; Ferrer, E.; Camprubi, D.; AlmuedoRiera, A.; Gallego, R. S.; Muelas, M.; Pinazo, M. J.; Muñoz, J. Malaria Prophylaxis Approach during COVID-19 Pandemic. Travel Med. Infect. Dis. 2020, 38 (101716), 101716.
https://doi.org/10.1016/j.tmaid.2020.101716

[27]. Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 2020, 10, 766-788.
https://doi.org/10.1016/j.apsb.2020.02.008

[28]. Kumar, P.; Uthaiah, C. A.; Mahantheshappa, S. S.; Satyanarayan, N. D.; Madhunapantula, S. V.; Kumar, H. S. S.; Achur, R. Antiproliferative Potential, Quantitative Structure-Activity Relationship, Cheminfor matic and Molecular Docking Analysis of Quinoline and Benzofuran Derivatives. Eur. J. Chem. 2020, 11 (3), 223-234.
https://doi.org/10.5155/eurjchem.11.3.223-234.2004

[29]. Mahantheshappa, S. S.; Shivanna, H.; Satyanarayan, N. D. Synthesis, Antimicrobial, Antioxidant, and ADMET Studies of Quinoline Derivatives. Eur. J. Chem. 2021, 12 (1), 37-44.
https://doi.org/10.5155/eurjchem.12.1.37-44.2038

[30]. ChemAxon - Software Solutions and Services for Chemistry & Biology, Marvin Sketch.17.21.0 https://www.chemaxon.com (accessed Jul 15, 2021).

[31]. Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46 (D1), D1074-D1082.
https://doi.org/10.1093/nar/gkx1037

[32]. Schüttelkopf, A. W.; van Aalten, D. M. F. PRODRG: A Tool for High-Throughput Crystallography of Protein-Ligand Complexes. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 (Pt 8), 1355-1363.
https://doi.org/10.1107/S0907444904011679

[33]. Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27 (3), 221-234.
https://doi.org/10.1007/s10822-013-9644-8

[34]. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582 (7811), 289-293.
https://doi.org/10.1038/s41586-020-2223-y

[35]. Estrada, E. Topological Analysis of SARS CoV-2 Main Protease. Chaos 2020, 30 (6), 061102.
https://doi.org/10.1063/5.0013029

[36]. Zhang, B.; Zhao, Y.; Jin, Z.; Liu, X.; Yang, H.; Rao, Z. The Crystal Structure of COVID-19 Main Protease in Apo Form. Worldwide Protein Data Bank March 11, 2020. https://doi.org/10.2210/pdb6m03/pdb.
https://doi.org/10.2210/pdb6m03/pdb

[37]. Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C. D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T. D.; Dunnett, L.; Fairhead, M.; Firth, J. D.; Jones, S. P.; Keeley, A.; Keserü, G. M.; Klein, H. F.; Martin, M. P.; Noble, M. E. M.; O'Brien, P.; Powell, A.; Reddi, R. N.; Skyner, R.; Snee, M.; Waring, M. J.; Wild, C.; London, N.; von Delft, F.; Walsh, M. A. Crystallographic and Electrophilic Fragment Screening of the SARS-CoV-2 Main Protease. Nat. Commun. 2020, 11 (1), 5047.
https://doi.org/10.1038/s41467-020-18709-w

[38]. Owen, C. D.; Lukacik, P.; Strain-Damerell, C. M.; Douangamath, A.; Powell, A. J.; Fearon, D.; Brandao-Neto, J.; Crawshaw, A. D.; Aragao, D.; Williams, M.; Flaig, R.; Hall, D. R.; McAuley, K. E.; Mazzorana, M.; Stuart, D. I.; von Delft, F.; Walsh, M. A. SARS-CoV-2 Main Protease with Unliganded Active Site (2019-NCoV, Coronavirus Disease 2019, COVID-19). Worldwide Protein Data Bank March 11, 2020. https://doi.org/10.2210/pdb6y84/pdb.
https://doi.org/10.2210/pdb6y84/pdb

[39]. Pandey, A. K.; Siddiqui, M. H.; Dutta, R. Drug-Likeness Prediction of Designed Analogues of Isoniazid Standard Targeting FabI Enzyme Regulation from P. Falciparum. Bioinformation 2019, 15 (5), 364-368.
https://doi.org/10.6026/97320630015364

[40]. Thakur, Z.; Dharra, R.; Saini, V.; Kumar, A.; Mehta, P. K. Insights from the Protein-Protein Interaction Network Analysis of Mycobacterium Tuberculosis Toxin-Antitoxin Systems. Bioinformation 2017, 13 (11), 380-387.
https://doi.org/10.6026/97320630013380

[41]. Goddard, T. D.; Huang, C. C.; Ferrin, T. E. Visualizing Density Maps with UCSF Chimera. J. Struct. Biol. 2007, 157 (1), 281-287.
https://doi.org/10.1016/j.jsb.2006.06.010

[42]. Norgan, A. P.; Coffman, P. K.; Kocher, J.-P. A.; Katzmann, D. J.; Sosa, C. P. Multilevel Parallelization of AutoDock 4.2. J. Cheminform. 2011, 3 (1), 12.
https://doi.org/10.1186/1758-2946-3-12

[43]. Ray, S.; Madrid, P. B.; Catz, P.; LeValley, S. E.; Furniss, M. J.; Rausch, L. L.; Guy, R. K.; DeRisi, J. L.; Iyer, L. V.; Green, C. E.; Mirsalis, J. C. Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models. J. Med. Chem. 2010, 53 (9), 3685-3695.
https://doi.org/10.1021/jm100057h

[44]. Balasubramaniyan, S.; Irfan, N.; Umamaheswari, A.; Puratchikody, A. Design and Virtual Screening of Novel Fluoroquinolone Analogs as Effective Mutant DNA GyrA Inhibitors against Urinary Tract Infection-Causing Fluoroquinolone Resistant Escherichia Coli. RSC Adv. 2018, 8 (42), 23629-23647.
https://doi.org/10.1039/C8RA01854E

[45]. Kumar, P.; Satyanarayan, N. D.; Madhunapantula, S. R. V.; Kumar, H. S. S.; Achur, R. In Silico Screening for the Interaction of Small Molecules with Their Targets and Evaluation of Therapeutic Efficacy by Free Online Tools. Eur. J. Chem. 2020, 11 (2), 168-178.
https://doi.org/10.5155/eurjchem.11.2.168-178.1962

[46]. Han, Y.; Zhang, J.; Hu, C. Q.; Zhang, X.; Ma, B.; Zhang, P. In Silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Front. Pharmacol. 2019, 10, 434.
https://doi.org/10.3389/fphar.2019.00434

[47]. Small-Molecule Drug Discovery Suite 2013 QikProp, Version 3.8, Schrödinger, LLC, New York, NY, 2013.

[48]. Clark, D. E. Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 1. Prediction of Intestinal Absorption. J. Pharm. Sci. 1999, 88 (8), 807-814.
https://doi.org/10.1021/js9804011

[49]. O'Hagan, S.; Kell, D. B. The Apparent Permeabilities of Caco-2 Cells to Marketed Drugs: Magnitude, and Independence from Both Biophysical Properties and Endogenite Similarities. PeerJ 2015, 3 (e1405), e1405.
https://doi.org/10.7717/peerj.1405

[50]. Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; Hilgenfeld, R.; Yuen, K. Y.; Wong, L.; Gao, G.; Chen, S.; Chen, Z.; Ma, D.; Bartlam, M.; Rao, Z. Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biol. 2005, 3 (10), e324.
https://doi.org/10.1371/journal.pbio.0030324

[51]. Thakkar, S. S.; Shelat, F.; Thakor, P. Magical bullets from an indigenous Indian medicinal plant Tinosporacordifolia: An in silico approach for the antidote of SARS-CoV-2. Egyptian J. Petroleum 2021, 30(1), 53-66.
https://doi.org/10.1016/j.ejpe.2021.02.005

[52]. Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease - Inhibitor N3 Complex (PDB ID: 6LU7). J. Chem. Inf. Model. 2020, 60 (7), 3593-3602.
https://doi.org/10.1021/acs.jcim.0c00283

[53]. Alexpandi, R.; De Mesquita, J. F.; Pandian, S. K.; Ravi, A. V. Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing against COVID-19: An in Silico Analysis. Front. Microbiol. 2020, 11, 1796.
https://doi.org/10.3389/fmicb.2020.01796

[54]. Zumla, A.; Chan, J. F. W.; Azhar, E. I.; Hui, D. S. C.; Yuen, K.-Y. Coronaviruses - Drug Discovery and Therapeutic Options. Nat. Rev. Drug Discov. 2016, 15 (5), 327-347.
https://doi.org/10.1038/nrd.2015.37

[55]. Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The Use of Anti-Inflammatory Drugs in the Treatment of People with Severe Coronavirus Disease 2019 (COVID-19): The Perspectives of Clinical Immunologists from China. Clin. Immunol. 2020, 214 (108393), 108393.
https://doi.org/10.1016/j.clim.2020.108393

[56]. Fantini, J.; Chahinian, H.; Yahi, N. Synergistic Antiviral Effect of Hydroxychloroquine and Azithromycin in Combination against SARS-CoV-2: What Molecular Dynamics Studies of Virus-Host Interactions Reveal. Int. J. Antimicrob. Agents 2020, 56 (2), 106020.
https://doi.org/10.1016/j.ijantimicag.2020.106020

[57]. Schilling, W. H.; White, N. J. Does Hydroxychloroquine Still Have Any Role in the COVID-19 Pandemic? Expert Opin. Pharmacother. 2021, 22 (10), 1257-1266.
https://doi.org/10.1080/14656566.2021.1898589

[58]. Elfiky, A. A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp): A Molecular Docking Study. Life Sci. 2020, 253 (117592), 117592.
https://doi.org/10.1016/j.lfs.2020.117592

[59]. Majumder, R.; Mandal, M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: An in silico docking and molecular dynamics simulation approach. J. Biomol. Struct. Dyn. 2022, 40, 696-711.
https://doi.org/10.1080/07391102.2020.1817787

[60]. Kajal, K.; Panda, A. K.; Bhat, J.; Chakraborty, D.; Bose, S.; Bhattacharjee, P.; Sarkar, T.; Chatterjee, S.; Kar, S. K.; Sa, G. Andrographolide Binds to ATP-Binding Pocket of VEGFR2 to Impede VEGFA-Mediated Tumor-Angiogenesis. Sci. Rep. 2019, 9 (1), 4073.
https://doi.org/10.1038/s41598-019-40626-2

[61]. Al-Jaidi, B. A.; Telfah, S. T.; Bardaweel, S. K.; Deb, P. K.; Borah, P.; Venugopala, K. N.; Bataineh, Y. A.; Al Khames Aga, Q. A. Anticancer Activity and in Silico ADMET Properties of 2,4,5-Trisubstituted thiazole Derivatives. Curr. Drug Metab. 2020, 21. https://doi.org/10.2174/1389200221666201217094602.
https://doi.org/10.2174/1389200221666201217094602


How to cite


Kumar, P.; Mahantheshappa, S.; Balasubramaniyan, S.; Satyanarayan, N.; Achur, R. Eur. J. Chem. 2023, 14(1), 30-38. doi:10.5155/eurjchem.14.1.30-38.2350
Kumar, P.; Mahantheshappa, S.; Balasubramaniyan, S.; Satyanarayan, N.; Achur, R. Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis. Eur. J. Chem. 2023, 14(1), 30-38. doi:10.5155/eurjchem.14.1.30-38.2350
Kumar, P., Mahantheshappa, S., Balasubramaniyan, S., Satyanarayan, N., & Achur, R. (2023). Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis. European Journal of Chemistry, 14(1), 30-38. doi:10.5155/eurjchem.14.1.30-38.2350
Kumar, Praveen, Santhosha Sangapurada Mahantheshappa, Sakthivel Balasubramaniyan, Nayak Devappa Satyanarayan, & Rajeshwara Achur. "Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis." European Journal of Chemistry [Online], 14.1 (2023): 30-38. Web. 28 May. 2023
Kumar, Praveen, Mahantheshappa, Santhosha, Balasubramaniyan, Sakthivel, Satyanarayan, Nayak, AND Achur, Rajeshwara. "Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis" European Journal of Chemistry [Online], Volume 14 Number 1 (31 March 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.1.30-38.2350


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(1), 30-38 | doi: https://doi.org/10.5155/eurjchem.14.1.30-38.2350 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.