European Journal of Chemistry 2021, 12(1), 23-31 | doi: https://doi.org/10.5155/eurjchem.12.1.23-31.2039 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies


Jahangir Mondal (1) orcid , Amit Kumar Manna (2) orcid , Goutam Kumar Patra (3,*) orcid

(1) Department of Chemistry, School of Physical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
(2) Department of Chemistry, School of Physical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
(3) Department of Chemistry, School of Physical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
(*) Corresponding Author

Received: 31 Aug 2020 | Revised: 07 Dec 2020 | Accepted: 20 Dec 2020 | Published: 31 Mar 2021 | Issue Date: March 2021

Abstract


Three organophosphorus mercury (II) coordination compounds [Hg2(µ-X)2X2(PPh3)2] {X: I (1), Br (2), and Cl (3)} have been synthesized by the reaction of mercury (II) halides with triphenylphosphine. The prepared complexes were characterized by spectroscopic techniques as well as by elemental analysis. The crystal structure of [Hg2(µ-I)2I2(PPh3)2] (1) was obtained by single-crystal X-ray diffraction study. Crystal data for [Hg2(µ-I)2I2(PPh3)2], C36H30Hg2I4P2: Monoclinic, space group P21/c (no. 14), a = 19.2115(13) Å, b = 11.1291(8) Å, c = 19.0599(14) Å, β = 90.461(2)°, = 4075.0(5) Å3, Z = 4, T = 293.15 K, μ (MoKα) = 10.657 mm-1, Dcalc = 2.336 g/cm3, 46095 reflections measured (4.23° ≤ 2Θ ≤ 49.994°), 7182 unique (Rint = 0.0563, Rsigma = 0.0365) which were used in all calculations. The final R1 was 0.0322 (I > 2σ(I)) and wR2 was 0.0780 (all data). The single crystal analysis of [Hg2(µ-I)2I2(PPh3)2] complex revealed that it has dimeric structure with bridged halides. [Hg2(µ-I)2I2(PPh3)2] complex has also a supramolecular arrangement through I···H-C interactions. The crystal packing and supramolecular features of these coordination compounds have also been studied using geometrical analysis, Hirshfeld surface analysis and DFT studies. Hirshfeld surface analysis indicated that H···H (49.3%), C···H (10.6%), and I···H (12.8%) interactions are the primary contributors to the intermolecular stabilization in the crystal. The equilibrium geometries of the studied complexes are investigated theoretically at the B3LYP/LANL2DZ level of theory. The calculated energy gap between HOMO-LUMO orbitals for complexes 1, 2, and 3 are in the trend of complex 3 > 2 > 1.


Keywords


DFT; Mercury halides; X-ray crystal structure; Hirshfeld surface studies; Halide bridged complexes; Triphenyl phosphine ligand

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.1.23-31.2039

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 184 times | icon graph PDF Article downloaded 51 times

Funding information


Department of Science and Technology (File Nos. SR/FST/CSI-264/2014 and EMR/2017/0001789), Government of India, New Delhi, India..

References


[1]. Jennette, K. W. Environ. Health Perspec. 1981, 40, 233-252.
https://doi.org/10.1289/ehp.8140233

[2]. Dang, Y.; Meng, X.; Jiang, K.; Zhong, C.; Chen, X.; Qin, J. Dalton Trans. 2013, 42 (27), 9893-9897.
https://doi.org/10.1039/c3dt50291k

[3]. Tanaka, Y.; Kondo, J.; Sychrovsky, V.; Sebera, J.; Dairaku, T.; Saneyoshi, H.; Urata, H.; Torigoe, H.; Ono, A. Chem. Commun. 2015, 51 (98), 17343-17360.
https://doi.org/10.1039/C5CC02693H

[4]. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th edition, John Wiley & Sons, 1999.

[5]. Grdenic, D. Q. Rev., Chem. Soc. 1965, 19 (3), 303-328.
https://doi.org/10.1039/qr9651900303

[6]. Chillemi, G.; Mancini, G.; Sanna, N.; Barone, V.; Della Longa, S.; Benfatto, M.; Pavel, N. V.; D'Angelo, P. J. Am. Chem. Soc. 2007, 129 (17), 5430-5436.
https://doi.org/10.1021/ja066943z

[7]. Khavasi, H. R.; Tahrani, A. A. CrystEngComm 2013, 15 (29), 5799-5812.
https://doi.org/10.1039/c3ce40433a

[8]. Khavasi, H. R.; Azizpoor Fard, M. Cryst. Growth Des. 2010, 10 (4), 1892-1896.
https://doi.org/10.1021/cg100265d

[9]. Khavasi, H. R.; Mir Mohammad Sadegh, B. Dalton Trans. 2014, 43 (14), 5564-5573.
https://doi.org/10.1039/C3DT53220H

[10]. Guidara, S.; Feki, H.; Abid, Y. Spectrochim. Acta A 2013, 115, 437-444.
https://doi.org/10.1016/j.saa.2013.06.080

[11]. Elleuch, N.; Ben Ahmed, A.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2014, 121, 129-138.
https://doi.org/10.1016/j.saa.2013.10.039

[12]. Guidara, S.; Ahmed, A. B.; Abid, Y.; Feki, H. Spectrochim. Acta A 2014, 127, 275-285.
https://doi.org/10.1016/j.saa.2014.02.028

[13]. Ahmed, A. B.; Elleuch, N.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2011, 79 (3), 554-561.
https://doi.org/10.1016/j.saa.2011.03.033

[14]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C. Spectrochim. Acta A 2010, 75 (1), 293-298.
https://doi.org/10.1016/j.saa.2009.10.026

[15]. Ahmed, A. B.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2010, 75 (4), 1315-1320.
https://doi.org/10.1016/j.saa.2009.12.073

[16]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.; Mlayah, A. J. Mol. Struct. 2009, 920 (1-3), 1-7.
https://doi.org/10.1016/j.molstruc.2008.09.029

[17]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A. J. Mol. Struct. 2008, 888 (1-3), 180-186.
https://doi.org/10.1016/j.molstruc.2007.11.056

[18]. Zyss, J. Molecular Nonlinear Optics Materials Physics and Devices, Academic Press, New York, 1994.

[19]. Jiang, M.; Fang, Q. Adv. Mater. 1999, 11 (13), 1147-1151.
https://doi.org/10.1002/(SICI)1521-4095(199909)11:13<1147::AID-ADMA1147>3.0.CO;2-H

[20]. Angeli Mary, P. A.; Dhanuskodi, S. Spectrochim. Acta A 2001, 57 (12), 2345-2353.
https://doi.org/10.1016/S1386-1425(01)00428-0

[21]. Rajendran, V.; Shyamala, D.; Loganayaki, M.; Ramasamy, P. Mater. Lett. 2007, 61 (16), 3477-3479.
https://doi.org/10.1016/j.matlet.2006.11.112

[22]. Jeyakumari, A. P.; Manivannan, S.; Dhanuskodi, S. Spectrochim. Acta A 2007, 67 (1), 83-86.
https://doi.org/10.1016/j.saa.2006.06.027

[23]. Dong, X.; Minhua, J.; Zhongke, T. Acta Chim. Sinica 1983, 41 (6), 570-573.

[24]. Mondal, J.; Mukherjee, A.; Patra, G. K. Inorg. Chim. Acta 2017, 463, 44-53.
https://doi.org/10.1016/j.ica.2017.03.031

[25]. Mondal, J.; Pal, P. K.; Mukherjee, A.; Patra, G. K. Inorg. Chim. Acta 2017, 466, 274-284.
https://doi.org/10.1016/j.ica.2017.06.025

[26]. De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101 (5), 1451-1464.
https://doi.org/10.1021/cr9903205

[27]. Fitzgerald, G.; Andzelm, J. J. Phys. Chem. 1991, 95 (26), 10531-10534.
https://doi.org/10.1021/j100179a003

[28]. Tanak, H. Int. J. Quantum Chem. 2011, 112 (11), 2392-2402.
https://doi.org/10.1002/qua.23206

[29]. Hyde, S.; Ninham, B. W.; Andersson, S.; Larsson, K.; Landh, T.; Blum, Z.; Lidin, S. The Mathematics of Curvature. In the Language of Shape; Elsevier, 1997; pp 1-42.
https://doi.org/10.1016/B978-044481538-5/50002-2

[30]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[31]. McKinnon, J. J.; Fabbiani, F. P. A.; Spackman, M. A. Cryst. Growth Des. 2007, 7 (4), 755-769.
https://doi.org/10.1021/cg060773k

[32]. Moggach, S. A.; Parsons, S.; Wood, P. A. Crystallogr. Rev. 2008, 14 (2), 143-184.
https://doi.org/10.1080/08893110802037945

[33]. Parkin, A.; Barr, G.; Dong, W.; Gilmore, C. J.; Jayatilaka, D.; McKinnon, J. J.; Spackman, M. A.; Wilson, C. C. CrystEngComm 2007, 9 (8), 648-652.
https://doi.org/10.1039/b704177b

[34]. Barr, G.; Dong, W.; Gilmore, C. J.; Parkin, A.; Wilson, C. C. J. Appl. Cryst. 2005, 38 (5), 833-841.
https://doi.org/10.1107/S0021889805021308

[35]. Dadrass, A.; Rahchamani, H. J. Chil. Chem. Soc. 2016, 61 (2), 2968-2972.
https://doi.org/10.4067/S0717-97072016000200023

[36]. Bruker. SAINT, SMART. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

[37]. Sheldrick, G. M. Acta Cryst. Sect. A 2007, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[38]. Farrugia, L. J. J. Appl. Cryst. 1999, 32 (4), 837-838.
https://doi.org/10.1107/S0021889899006020

[39]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-Man, J. R.; Montgomery Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.; Salvador, A. P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Ste-fanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; John-son, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 09W, Revision D.01, Wallingford, CT, 2009.

[40]. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. Semichem, Inc., Shawnee Mission, KS, 2009.

[41]. Norret, M.; Makha, M.; Sobolev, A. N.; Raston, C. L. New J. Chem. 2008, 32 (5), 808-812.
https://doi.org/10.1039/b718937k

[42]. Meng, X. X. Applications of Hirshfeld surfaces to ionic and mineral crystals, Ph.D. Thesis, University of New England, 2004.

[43]. Pendas, A. M.; Luana, V.; Pueyo, L.; Francisco, E.; Mori-Sanchez, P. J. Chem. Phys. 2002, 117 (3), 1017-1023.
https://doi.org/10.1063/1.1483851

[44]. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46 (44), 8342-8356.
https://doi.org/10.1002/anie.200700534

[45]. CrystalExplorer (Version 3.1), Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., Spackman, M. A., University of Western Australia, 2012.

[46]. Sebastian, S.; Sundaraganesan, N. Spectrochim. Acta A 2010, 75 (3), 941-952.
https://doi.org/10.1016/j.saa.2009.11.030

[47]. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chimica. Acta 2000, 103 (3-4), 343-345.
https://doi.org/10.1007/s002149900013

[48]. Huheey, J. E., Inorganic Chemistry-Principles of Structure and Reactivity, 2nd Edition, Harper Int. Ed., New York, 1978.

[49]. Radovic, L. R.; Bockrath, B. J. Am. Chem. Soc. 2005, 127 (16), 5917-5927.
https://doi.org/10.1021/ja050124h

[50]. Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, B. Chem. Phys. Lett. 2000, 323 (1-2), 59-70.
https://doi.org/10.1016/S0009-2614(00)00488-7


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Mondal, J.; Manna, A.; Patra, G. Eur. J. Chem. 2021, 12(1), 23-31. doi:10.5155/eurjchem.12.1.23-31.2039
Mondal, J.; Manna, A.; Patra, G. Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies. Eur. J. Chem. 2021, 12(1), 23-31. doi:10.5155/eurjchem.12.1.23-31.2039
Mondal, J., Manna, A., & Patra, G. (2021). Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies. European Journal of Chemistry, 12(1), 23-31. doi:10.5155/eurjchem.12.1.23-31.2039
Mondal, Jahangir, Amit Kumar Manna, & Goutam Kumar Patra. "Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies." European Journal of Chemistry [Online], 12.1 (2021): 23-31. Web. 24 Jul. 2021
Mondal, Jahangir, Manna, Amit, AND Patra, Goutam. "Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies" European Journal of Chemistry [Online], Volume 12 Number 1 (31 March 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.1.23-31.2039

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(1), 23-31 | doi: https://doi.org/10.5155/eurjchem.12.1.23-31.2039 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.