European Journal of Chemistry

Synthesis, characterization, X-ray crystal structure and Hirshfeld surface analysis of Ni(II) complex of 1,2-bis(pyridin-2-ylmethylene)hydrazine

Crossmark


Main Article Content

Meman Sahu
Amit Kumar Manna
Dinesh De
Goutam Kumar Patra

Abstract

We report the synthesis, characterization, X-ray crystal structure and Hirshfeld surface analysis of Ni(II) perchlorate complex (1, Ni2L3·4ClO4·2CH3CN) of 1,2-bis(pyridin-2-ylmethylene)hydrazine (L) ligand. The X-ray crystallographic study of complex 1 reveals that in the presence of Ni(II) ions,the ligand L forms a dimeric triple helix with a Ni(II)-Ni(II) distance of 3.794 Å. Crystal data for C40H36Cl4N14Ni2O16: Monoclinic, space group P21/c (no. 14), a = 20.7558(19) Å, b = 13.1937(12) Å, c = 20.0181(18) Å, β = 96.9510(10)°, = 5441.6(9) Å3, Z = 4, T = 293.15 K, μ(MoKα) = 0.965 mm-1, Dcalc = 1.498 g/cm3, 38075 reflections measured (1.976° ≤ 2Θ ≤ 43.728°), 6557 unique (Rint = 0.0695, Rsigma = 0.0466) which were used in all calculations. The final R1 was 0.0518 (I > 2σ(I)) and wR2 was 0.1270 (all data). The Hirshfeld surface analysis of complex 1 shows that C···H, H···H, N···H and O···H interactions of 10.9, 26.4, 6.7, and 33.4%; respectively, which exposed that the main intermolecular interactions were H···H intermolecular interactions.


icon graph This Abstract was viewed 646 times | icon graph Article PDF downloaded 261 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Sahu, M.; Manna, A. K.; De, D.; Patra, G. K. Synthesis, Characterization, X-Ray Crystal Structure and Hirshfeld Surface Analysis of Ni(II) Complex of 1,2-bis(pyridin-2-ylmethylene)hydrazine. Eur. J. Chem. 2022, 13, 1-7.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Stratton, W. J.; Busch, D. H. The Complexes of Pyridinaldazine with Iron(II) and Nickel(II). J. Am. Chem. Soc. 1958, 80 (6), 1286-1289.
https://doi.org/10.1021/ja01539a004

[2]. Stratton, W. J.; Busch, D. H. The Complexes of Pyridinaldazine with Iron(II) and Nickel(II). II. J. Am. Chem. Soc. 1958, 80 (13), 3191-3195.
https://doi.org/10.1021/ja01546a006

[3]. Stratton, W. J.; Busch, D. H. The Complexes of Pyridinaldazine. III. Infrared Spectra and Continued Synthetic Studies. J. Am. Chem. Soc. 1960, 82 (18), 4834-4839.
https://doi.org/10.1021/ja01503a021

[4]. Zimmer, M.; Tocher, D. A.; Patra, G. K.; Naskar, J. P.; Datta, D. First Example of a Double Stranded Helicate with Square-Planar Coordination for the Metal. Indian J. Chem. Sect. A 1999, 38, 1087-1091.

[5]. Pal, P. K.; Chowdhury, S.; Purkayastha, P.; Tocher, D. A.; Datta, D. A Novel Double-Stranded Dinuclear Copper(I) Helicate Having a Photoluminescent CuI2N8 Chromophore. Inorg. Chem. Commun. 2000, 3 (11), 585-589.
https://doi.org/10.1016/S1387-7003(00)00147-7

[6]. Stratton, W. J. Metal Complexes with Azine Ligands. II. Iron(II), Cobalt(II), and Nickel(II) Complexes with 2-Pyridyl Methyl Ketazine. Inorg. Chem. 1970, 9 (3), 517-520.
https://doi.org/10.1021/ic50085a017

[7]. Stratton, W. J.; Rettig, M. F.; Drury, R. F. Metal Complexes with Azine Ligands. I. Ligand Hydrolysis and Template Synthesis in the Iron(II)-2-Pyridinaldazine System. Inorganica Chim. Acta 1969, 3, 97-102.
https://doi.org/10.1016/S0020-1693(00)92456-3

[8]. Boyd, P. D. W.; Gerloch, M.; Sheldrick, G. M. Crystal Structure of Tris-µ-[2,5-Di(2-Pyridyl)-3,4-Diazahexa-2,4-Diene]-Dicobalt(II) Di[Aquotrichlorozincate(II)] Tetrachlorozincate(II) Tetrahydrate: A Helical Binuclear Cobalt(II) Cation. J. Chem. Soc., Dalton Trans. 1974, No. 10, 1097-1102.
https://doi.org/10.1039/DT9740001097

[9]. Hamblin, J.; Jackson, A.; Alcock, N. W.; Hannon, M. J. Triple Helicates and Planar Dimers Arising from Silver(i) Coordination to Directly Linked Bis-Pyridylimine Ligands. J. Chem. Soc. 2002, No. 8, 1635.
https://doi.org/10.1039/b110137b

[10]. Pal, S.; Pal, S. Syntheses, Structures and Properties of Trans-Dichloro ruthenium(II) Complexes with N4-Donor Schiff Bases. Polyhedron 2003, 22 (6), 867-873.
https://doi.org/10.1016/S0277-5387(03)00008-1

[11]. Mukherjee, A.; Dutta, A.; Jana, A. D.; Patra, G. K. Copper(I) and Silver(I) Coordination Assemblies of Imino-Pyridyl and Azino-Pyridyl Ligands: Syntheses, Crystal Structures, Spectroscopic and Photophysical Properties. Inorganica Chim. Acta 2013, 404, 131-143.
https://doi.org/10.1016/j.ica.2013.04.012

[12]. Mukherjee, A.; Chakrabarty, R.; Ng, S. W.; Patra, G. K. The Syntheses, Characterizations, X-Ray Crystal Structures and Properties of Cu(I) Complexes of a Bis-Bidentate Schiff Base Ligand. Inorganica Chim. Acta 2010, 363 (8), 1707-1712.
https://doi.org/10.1016/j.ica.2009.12.009

[13]. Patra, G. K.; Pal, P. K.; Mondal, J.; Ghorai, A.; Mukherjee, A.; Saha, R.; Fun, H.-K. Predesigned Synthesis of Dinuclear to Unusual Hexanuclear to 1D Coordination Polymer of Cu(I)-Halides and Their and Photophysical Properties. Inorganica Chim. Acta 2016, 447, 77-86.
https://doi.org/10.1016/j.ica.2016.03.032

[14]. Mondal, J.; Mukherjee, A.; Patra, G. K. CuX (X = I, Br and Cl) Based Coordination Polymers of Azino-Pyridyl Ligand and PPh3: Structural, Spectral, Electro-Chemical, and DFT Studies. Inorganica Chim. Acta 2017, 463, 44-53.
https://doi.org/10.1016/j.ica.2017.03.031

[15]. Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, G. K. A Thio-Urea Based Chromogenic and Fluorogenic Chemosensor for Expeditious Detection of Cu2+, Hg2+ and Ag+ Ions in Aqueous Medium. J. Photochem. Photobiol. A Chem. 2018, 356, 477-488.
https://doi.org/10.1016/j.jphotochem.2018.01.017

[16]. Patra, G. K.; Goldberg, I.; Chowdhury, S. K.; Maiti, B. C.; Sarkar, A.; Bangal, P. R.; Chakravorti, S.; Chattopadhyay, N.; Tocher, D. A.; Drew, M. G. B.; Mostafa, G.; Chowdhury, S.; Datta, D. A New Photoluminescent CuI2N6 Chromophore. New J. Chem. 2001, 25 (11), 1371-1373.
https://doi.org/10.1039/b105442m

[17]. Patra, G. K.; Goldberg, I.; De, S.; Datta, D. Effect of the Size of Discrete Anions on the Nuclearity of a Complex Cation. CrystEngComm 2007, 9 (9), 828-832.
https://doi.org/10.1039/b706781j

[18]. Patra, G. K.; Goldberg, I. Syntheses and Crystal Structures of Copper and Silver Complexes with New Imine Ligands − Air-Stable, Photoluminescent CuIN4 Chromophores. Eur. J. Inorg. Chem. 2003, 2003 (5), 969-977.
https://doi.org/10.1002/ejic.200390129

[19]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[20]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[21]. Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[22]. Norret, M.; Makha, M.; Sobolev, A. N.; Raston, C. L. Controlling the Confinement of Fullerene C60 Molecules Using a Saddle Shape Ni(Ii) Macrocycle. New J. Chem. 2008, 32 (5), 808-812.
https://doi.org/10.1039/b718937k

[23]. Spackman, M. A.; McKinnon, J. J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[24]. Meng, X. X. Applications of Hirshfeld surfaces to ionic and mineral crystals, Ph.D. Thesis, University of New England, 2004.

[25]. Pendás, A. M.; Luaña, V.; Pueyo, L.; Francisco, E.; Mori-Sánchez, P. Hirshfeld Surfaces as Approximations to Interatomic Surfaces. J. Chem. Phys. 2002, 117 (3), 1017-1023.
https://doi.org/10.1063/1.1483851

[26]. Desiraju, G. R. Crystal Engineering: A Holistic View. Angew. Chem. Int. Ed. Engl. 2007, 46 (44), 8342-8356.
https://doi.org/10.1002/anie.200700534

[27]. McKinnon, J. J.; Fabbiani, F. P. A.; Spackman, M. A. Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. Cryst. Growth Des. 2007, 7 (4), 755-769.
https://doi.org/10.1021/cg060773k

[28]. Schmidt, G. M. J. Photodimerization in the Solid State. Pure Appl. Chem. 1971, 27 (4), 647-678.
https://doi.org/10.1351/pac197127040647

[29]. Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer (Version 3.1), University of Western Australia, 2012.

Supporting Agencies

The Department of Science and Technology (SR/FST/CSI-264/2014 and EMR/2017/0001789) and the Department of Biotechnology, Government of India, New Delhi India.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).