European Journal of Chemistry

Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex

Crossmark


Main Article Content

Cemal Koray Ozer
Gun Binzet
Hakan Arslan

Abstract

Herein, we describe the synthesis and characterization of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex, cis-[Cu(L-κ2S,O)2], has been prepared by the reaction of N-(diethyl carbamothioyl)cyclohexanecarboxamide ligand with copper(II) acetate. The green colored crystals of the complex were obtained by slow evaporation of their dichloromethane:ethanol solution (2:1, v:v). The crystal structure of cis-[Cu(L-κ2S,O)2] was obtained by single-crystal X-ray diffraction. The crystal structure reveals an monoclinic C2 (no. 5) space group with cell parameters a = 14.848(3) Å, b = 10.543(2) Å, c = 10.511(2) Å, β = 123.84(3)°, = 1366.7(7) Å3, Z = 2, T = 153(2) K, μ(MoKα) = 0.979 mm-1, Dcalc = 1.327 g/cm3, 4979 reflections measured (6.6° ≤ 2Θ ≤ 50.68°), 2243 unique (Rint = 0.0223, Rsigma = 0.0444) which were used in all calculations. The final R1 was 0.0225 (>2sigma(I)) and wR2 was 0.0490 (all data). The angular structural index parameter, τ4, is equal to 0.40, which confirms the distorted square planar geometry for the title compound. The puckering parameters (q2 = 0.015(3) Å, q3 = 0.576(3) Å, QT = 0.577(3) Å, θ = 1.6(3)° and φ = 20(11)°) of the title complex show that the cyclohexane ring adopts a chair conformation. The two ethyl groups of the diethyl amine group have anti-orientation with respect to one another. The crystal packing shows the molecules stacked in parallel sheets along [010], accompanied by C3-H3A···O1ⁱ (i -x, +y, 1-z) intermolecular contact.


icon graph This Abstract was viewed 1085 times | icon graph Article PDF downloaded 481 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ozer, C. K.; Binzet, G.; Arslan, H. Crystal and Molecular Structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) Complex. Eur. J. Chem. 2020, 11, 319-323.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Z. Chem. 2010, 21(3), 81-91.
https://doi.org/10.1002/zfch.19810210302

[2]. Bourne, S.; Koch, K. R. J. Chem. Soc., Dalton Trans. 1993, 13, 2071-2072.
https://doi.org/10.1039/DT9930002071

[3]. Koch, K. R.; Wang, Y.; Coetzee, A. J. Chem. Soc., Dalton Trans. 1999, 6, 1013-1016.
https://doi.org/10.1039/a809543d

[4]. Che, D. J.; Li, G.; Yao, X. L.; Wu, Q. J.; Wang, W. L.; Zhu, Y. J. Organometal. Chem. 1999, 584(1), 190-196.
https://doi.org/10.1016/S0022-328X(99)00138-2

[5]. Kemp, G.; Roodt, A.; Purcell, W.; Koch, K. R. J. Chem. Soc., Dalton Trans. 1997, 23, 4481-4484.
https://doi.org/10.1039/a705887j

[6]. Nkabyo, H. A.; Procacci, B.; Duckett, S. B.; Koch, K. R. Dalton Trans. 2019, 48(46), 17241-17251
https://doi.org/10.1039/C9DT03672E

[7]. Arslan, H.; Duran, N.; Borekci, G.; Koray Ozer, C.; Akbay, C. Molecules 2009, 14(1), 519-527.
https://doi.org/10.3390/molecules14010519

[8]. Arslan, H.; Flörke, U.; Külcü, N. J. Chem. Crystallog. 2003, 33(12), 919-924.
https://doi.org/10.1023/A:1027429814989

[9]. Rauf, M. K.; Imtiaz-ud-Din; Badshah, A.; Gielen, M.; Ebihara, M.; Vos, D. de; Ahmed, S. J. Inorg. Biochem. 2009, 103(8), 1135-1144.
https://doi.org/10.1016/j.jinorgbio.2009.05.014

[10]. Nordin, N. A.; Chai, T. W.; Tan, B. L.; Choi, C. L.; Abd Halim, A. N.; Hussain, H.; Ngaini, Z. J. Chem. 2017, 2017, 1-7.
https://doi.org/10.1155/2017/2378186

[11]. Saeed, S.; Rashid, N.; Ali, M.; Hussain, R. Eur. J. Chem. 2010, 1(3), 200-205.
https://doi.org/10.5155/eurjchem.1.3.200-205.120

[12]. Yang, W.; Liu, H.; Li, M.; Wang, F.; Zhou, W.; Fan, J. J. Inorg. Biochem. 2012, 116, 97-105.
https://doi.org/10.1016/j.jinorgbio.2012.08.001

[13]. del Campo, R.; Criado, J. J.; Garcia, E.; Hermosa, M. R.; Jimenez-Sanchez, A.; Manzano, J. L.; Monte, E.; Rodriguez-Fernandez, E.; Sanz, F. J. Inorg. Biochem. 2002, 89(1-2), 74-82.
https://doi.org/10.1016/S0162-0134(01)00408-1

[14]. Ramadas, K.; Suresh, G.; Janarthanan, N.; Masilamani, S. Pestic. Sci. 1998, 52(2), 145-151.
https://doi.org/10.1002/(SICI)1096-9063(199802)52:2<145::AID-PS677>3.0.CO;2-J

[15]. Weiqun, Z.; Wen, Y.; Liqun, X.; Xianchen, C. J. Inorg. Biochem. 2005, 99(6), 1314-1319.
https://doi.org/10.1016/j.jinorgbio.2005.03.004

[16]. Wu, J.; Shi, Q.; Chen, Z.; He, M.; Jin, L.; Hu, D. Molecules 2012, 17(5), 5139-5150.
https://doi.org/10.3390/molecules17055139

[17]. Saeed, S.; Rashid, N.; Ali, M.; Hussain, R.; Jones, P. G. Eur. J. Chem. 2010, 1(3), 221-227.
https://doi.org/10.5155/eurjchem.1.3.221-227.124

[18]. Perez, H.; O'Reilly, B.; Plutin, A. M.; Martinez, R.; Duran, R.; Collado, I. G.; Mascarenhas, Y. P. J. Coord. Chem. 2011, 64(16), 2890-2898.
https://doi.org/10.1080/00958972.2011.608426

[19]. Kulakov, I. V.; Nurkenov, O. A.; Akhmetova, S. B.; Seidakhmetova, R. B.; Zhambekov, Z. M. Pharm. Chem. J. 2011, 45(1), 15-18.
https://doi.org/10.1007/s11094-011-0551-9

[20]. Hallur, G.; Jimeno, A.; Dalrymple, S.; Zhu, T.; Jung, M. K.; Hidalgo, M.; Isaacs, J. T.; Sukumar, S.; Hamel, E.; Khan, S. R. J. Med. Chem. 2006, 49(7), 2357-2360.
https://doi.org/10.1021/jm051261s

[21]. Rao, X. P.; Wu, Y.; Song, Z. Q.; Shang, S. B.; Wang, Z. D. Med. Chem. Res. 2010, 20(3), 333-338.
https://doi.org/10.1007/s00044-010-9303-8

[22]. Peng, H.; Liang, Y.; Chen, L.; Fu, L.; Wang, H.; He, H. Bioorg. Med. Chem. Lett. 2011, 21(4), 1102-1104.
https://doi.org/10.1016/j.bmcl.2010.12.130

[23]. Saeed, S.; Rashid, N.; Jones, P. G.; Ali, M.; Hussain, R. Eur. J. Med. Chem. 2010, 45(4), 1323-1331.
https://doi.org/10.1016/j.ejmech.2009.12.016

[24]. Yaseen, S.; Rauf, M. K.; Zaib, S.; Badshah, A.; Tahir, M. N.; Ali, M. I.; Imtiaz-ud-Din; Shahid, M.; Iqbal, J. Inorg. Chim. Acta 2016, 443, 69-77.
https://doi.org/10.1016/j.ica.2015.12.027

[25]. Burgeson, J. R.; Moore, A. L.; Boutilier, J. K.; Cerruti, N. R.; Gharaibeh, D. N.; Lovejoy, C. E.; Amberg, S. M.; Hruby, D. E.; Tyavanagimatt, S. R.; Allen, R. D.; Dai, D. Bioorg. Med. Chem. Lett. 2012, 22(13), 4263-4272.
https://doi.org/10.1016/j.bmcl.2012.05.035

[26]. Williams, R. H.; Frame, E. G. Bull. Johns Hopkins Hosp. 1945, 77, 314-328.

[27]. Madan, V. K.; Taneja, A. D. Indian Chem. Soc. 1991, 68, 471-472.

[28]. Dziduch, K.; Kołodziej, P.; Paneth, A.; Bogucka-Kocka, A.; Wujec, M. Molecules 2020, 25(12), 2770.
https://doi.org/10.3390/molecules25122770

[29]. Schroeder, D. C. Thioureas. Chem. Rev. 1955, 55(1), 181-228.
https://doi.org/10.1021/cr50001a005

[30]. Zhang, J. F.; Xu, J. Y.; Wang, B. L.; Li, Y. X.; Xiong, L. X.; Li, Y. Q.; Ma, Y.; Li, Z. M. J. Agric. Food Chem. 2012, 60(31), 7565-7572.
https://doi.org/10.1021/jf302446c

[31]. Kea, S.Y.; Xue, S. J. Arkivoc 2006, 2006(10), 63-68.
https://doi.org/10.3998/ark.5550190.0007.a08

[32]. Limban, C.; Vasile, A.; Chirita, I.C.; Caproiu, M. Rev. De Chim. 2010, 61, 946-950.

[33]. Abosadiya, H. M. Eur. J. Chem. 2020, 11(2), 156-159.
https://doi.org/10.5155/eurjchem.11.2.156-159.1981

[34]. Hu, J. H.; Fan, X. H.; Du, X. L.; Wei, T. B. Phosph. Sulfur Silicon Relat. Elem. 2010, 185(12), 2558-2562.
https://doi.org/10.1080/10426501003752187

[35]. Gunasekaran, N.; Remya, N.; Radhakrishnan, S.; Karvembu, R. J. Coord. Chem. 2011, 64(3), 491-501.
https://doi.org/10.1080/00958972.2010.548007

[36]. Gunasekaran, N.; Karvembu, R. Inorg. Chem. Commun. 2010, 13(8), 952-955.
https://doi.org/10.1016/j.inoche.2010.05.004

[37]. Gunasekaran, N.; Jerome, P.; Ng, S. W.; Tiekink, E. R. T.; Karvembu, R. J. Mol. Catal. A: Chem. 2012, 353-354, 156-162.
https://doi.org/10.1016/j.molcata.2011.11.019

[38]. Gunasekaran, N.; Ramesh, P.; Ponnuswamy, M. N. G.; Karvembu, R. Dalton Trans. 2011, 40(46), 12519-12516.
https://doi.org/10.1039/c1dt10628g

[39]. Tzeng, Z. H.; Chen, H. Y.; Reddy, R. J.; Huang, C. T.; Chen, K. Tetrahedron 2009, 65(15), 2879-2888.
https://doi.org/10.1016/j.tet.2009.02.022

[40]. Hasan, S.; Hamedan, N. A.; Razali, A. A. A.; Uyup, N. H.; Zaki, H. M. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 172, 012050.
https://doi.org/10.1088/1757-899X/172/1/012050

[41]. Hamedan, N. A.; Hasan, S.; Zaki, H. M.; Alias, N. Z. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 172, 012038.
https://doi.org/10.1088/1757-899X/172/1/012038

[42]. Chen, H. L.; Guo, Z. F.; Lu, Z. Org. Lett. 2012, 14 (19), 5070-5073.
https://doi.org/10.1021/ol302313x

[43]. Gemili, M.; Nural, Y.; Keles, E.; Aydiner, B.; Seferoglu, N.; Sahin, E.; Sari, H.; Seferoglu, Z. J. Mol. Liquids 2018, 269, 920-932.
https://doi.org/10.1016/j.molliq.2018.08.054

[44]. Zhang, Y. M.; Cao, C.; Wei, W.; Xie, T. B. Chin. J. Chem. 2007, 25(5), 709-713.
https://doi.org/10.1002/cjoc.200790133

[45]. Zhang, Y.; Qin, J.; Lin, Q.; Wei, T. J. Fluorine Chem. 2006, 127(9), 1222-1227.
https://doi.org/10.1016/j.jfluchem.2006.06.018

[46]. Hu, S.; Guo, Y.; Xu, J.; Shao, S. Spectrochim. Acta A 2009, 72(5), 1043-1046.
https://doi.org/10.1016/j.saa.2008.12.042

[47]. Habtu, M. M.; Bourne, S. A.; Koch, K. R.; Luckay, R. C. New J. Chem. 2006, 30(8), 1155.
https://doi.org/10.1039/b603802f

[48]. Muhl, P.; Gloe, K.; Dietze, F.; Hoyer, E.; Beyer, L. Z. Chem. 2010, 26(3), 81-94.
https://doi.org/10.1002/zfch.19860260302

[49]. Luckay, R. C.; Mebrahtu, F.; Esterhuysen, C.; Koch, K. R. Inorg. Chem. Commun. 2010, 13(4), 468-470.
https://doi.org/10.1016/j.inoche.2010.01.010

[50]. Luckay, R. C.; Sheng, X.; Strasser, C. E.; Raubenheimer, H. G.; Safin, D. A.; Babashkina, M. G.; Klein, A. Dalton Trans. 2009, 39, 8227.
https://doi.org/10.1039/b910650b

[51]. Schuster, M.; Schwarzer, M. Anal. Chim. Acta 1996, 328(1), 1-11.
https://doi.org/10.1016/0003-2670(96)00091-8

[52]. Mautjana, A. N.; Miller, J. D. S.; Gie, A.; Bourne, S. A.; Koch, K. R. Dalton Trans. 2003, 10, 1952-1960.
https://doi.org/10.1039/B211885H

[53]. König, K. H.; Schuster, M.; Schneeweis, G.; Steinbrech, B. Z. Anal. Chem. 1984, 319(1), 66-69.
https://doi.org/10.1007/BF00476232

[54]. Bozkurt, S.; Gumus, I.; Arslan, H. J. Organometal. Chem. 2019, 884, 66-76.
https://doi.org/10.1016/j.jorganchem.2019.01.015

[55]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Res. Chem. Intermed. 2018, 45(2), 169-198.
https://doi.org/10.1007/s11164-018-3596-5

[56]. Binzet, G.; Turunc, E.; Flörke, U.; Külcü, N.; Arslan, H. J. Chem. 2018, 2018, 1-8.
https://doi.org/10.1155/2018/6108242

[57]. Solmaz, U.; Gumus, I.; Binzet, G.; Celik, O.; Balci, G. K.; Dogen, A.; Arslan, H. J. Coord. Chem. 2018, 71(2), 200-218.
https://doi.org/10.1080/00958972.2018.1427233

[58]. Binzet, G.; Gumus, I.; Dogen, A.; Flörke, U.; Kulcu, N.; Arslan, H. J. Mol. Struc. 2018, 1161, 519-529.
https://doi.org/10.1016/j.molstruc.2018.02.073

[59]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. J. Mol. Struc. 2018, 1157, 78-88.
https://doi.org/10.1016/j.molstruc.2017.12.017

[60]. Binzet, G.; Zeybek, B.; Kılıç, E.; Külcü, N.; Arslan, H. J. Chem. 2013, 2013, 1-7.
https://doi.org/10.1155/2013/201238

[61]. Binzet, G.; Kavak, G.; Külcü, N.; Özbey, S.; Flörke, U.; Arslan, H. J. Chem. 2013, 2013, 1-9.
https://doi.org/10.1155/2013/536562

[62]. Ozer, C. K.; Arslan, H.; Vanderveer, D.; Binzet, G. J. Coord. Chem. 2008, 62(2), 266-276
https://doi.org/10.1080/00958970802209623

[63]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42(2), 339-341.
https://doi.org/10.1107/S0021889808042726

[64]. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40(4), 786-790.
https://doi.org/10.1107/S0021889807029238

[65]. Sheldrick, G. M. Acta Crystallogr. C 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053273314026370

[66]. Spek, A. L. Acta Crystallogr. C 2015, 71(1), 9-18.
https://doi.org/10.1107/S2053229614024929

[67]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41(2), 466-470.
https://doi.org/10.1107/S0021889807067908

[68]. Arslan, H.; Külcü, N.; Flörke, U. Trans. Metal Chem. 2003, 28(7), 816-819.
https://doi.org/10.1023/A:1026064232260

[69]. Binzet, G.; Flörke, U.; Külcü, N.; Arslan, H. Eur. J. Chem. 2012, 3(2), 211-213.
https://doi.org/10.5155/eurjchem.3.2.211-213.594

[70]. Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 9, 955-964.
https://doi.org/10.1039/B617136B

[71]. Gumus, I.; Ozer, C. K.; Vanderveer, D.; Arslan, H. Eur. J. Chem. 2016, 7(4), 416-420
https://doi.org/10.5155/eurjchem.7.4.416-420.1503

[72]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 12, S1.
https://doi.org/10.1039/p298700000s1

[73]. Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97(6), 1354-1358.
https://doi.org/10.1021/ja00839a011

[74]. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry. University Science. p. 95. ISBN 978-1891389313, 2006.

Most read articles by the same author(s)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >> 
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).