

Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide
Cemal Koray Ozer (1)



(1) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey
(2) Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin, TR 33343, Turkey
(3) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey
(*) Corresponding Author
Received: 22 Oct 2021 | Revised: 14 Nov 2021 | Accepted: 20 Nov 2021 | Published: 31 Dec 2021 | Issue Date: December 2021
Abstract
N-(2-Chlorophenylcarbamothioyl)cyclohexanecarboxamide was characterized by a single crystal X-ray diffraction study. Crystal data for this compound, C14H17ClN2OS; Monoclinic, space group P21/n with Z = 4, a = 5.2385(10) Å, b = 17.902(4) Å, c = 15.021(3) Å, β = 90.86(3)°, V = 1408.5(5) Å3, T = 153(2) K, μ(MoKα) = 0.413 mm-1, Dcalc = 1.400 g/cm3, 9840 reflections measured (7.082° ≤ 2Θ ≤ 50.378°), 2519 unique (Rint = 0.0406, Rsigma = 0.0335) which were used in all calculations. The final R1 was 0.0397 (I > 2σ(I)) and wR2 was 0.0887 (all data). The puckering parameters (q2 = 0.019(3) Å, q3 = 0.578(3) Å, θ = 1.0(3)° and φ = 51(8)°) of the title compound show that the cyclohexane ring adopts a chair conformation. The molecular conformation of the title compound is stabilized by intramolecular hydrogen bonds (N2-H2⋅⋅⋅Cl1, N2-H2⋅⋅⋅O1, and C2-H2A⋅⋅⋅S1) and intermolecular hydrogen bonds (N1-H1⋅⋅⋅S1i and C9-HA⋅⋅⋅S1ii: 2-x, 2-y, 1-z). The intramolecular hydrogen bonds (N2-H2⋅⋅⋅O1 and C2-H2A⋅⋅⋅S1) are also form two pseudo-six-membered rings. Density functional theory optimized structure in the gaseous phase at B3LYP/6-311G(d,p) level of theory has been compared with the experimentally defined molecular structure. The molecular orbitals HOMO and LUMO with the energy gap for the title compound are calculated and the estimated energy gap (ΔE) between the HOMO and LUMO energies levels of the title compound is 3.5399 eV, which implies that the title molecule is very reactive. The Hirshfeld surface analysis reveals that the most important contributions to crystal packing are from H···H (49.0%), H···C/C···H (12.5%), H···Cl/Cl···H (10.9%), and H···S/S···H (10.0%) interactions. The energy-framework calculations are used to analyze and visualize the three-dimensional topology of the crystal packing. The intermolecular energy analysis confirmed a significant contribution of dispersion to the stabilization of molecular packings in the title compound.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.12.4.439-449.2196
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Mersin University Research Fund [Project No: BAP-SBETB (CKÖ) 2007-1], Mersin, Turkey.
Citations
[1]. Gün BİNZET
N-(Siklohekzil(metil)karbamotiyoil)-4-nitrobenzamit Bileşiğinin Sentezi, Kristal Yapısı, DFT Çalışmaları ve Hirshfeld Yüzey Analizi
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5(2), 681, 2022
DOI: 10.47495/okufbed.1090049

[2]. Aynur Alizada, Hakan Arslan
Experimental and theoretical studies of a thiourea derivative: 1-(4-chloro-benzoyl)-3-(2-trifluoromethyl-phenyl)thiourea
Journal of Molecular Structure 1279, 134996, 2023
DOI: 10.1016/j.molstruc.2023.134996

[3]. Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa, Mohammad Azam, Kim Min
Methimazole and propylthiouracil design as a drug for anti-graves' disease: Structural studies, Hirshfeld surface analysis, DFT calculations, molecular docking, molecular dynamics simulations, and design as a drug for anti-graves' disease
Journal of Molecular Structure 1289, 135913, 2023
DOI: 10.1016/j.molstruc.2023.135913

[4]. Ebru Keskin, Hakan Arslan
Synthesis, crystal structure, DFT calculations, and Hirshfeld surface analysis of an NNN pincer type compound
Journal of Molecular Structure 1283, 135252, 2023
DOI: 10.1016/j.molstruc.2023.135252

[5]. Ebru Keskin, Hakan Arslan
Palladium complexes containing NNN pincer type ligands and their activities in Suzuki-Miyaura cross coupling reaction
Heliyon 9(7), e17608, 2023
DOI: 10.1016/j.heliyon.2023.e17608

[6]. Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa, Muhammad Tukur Ibrahim
Towards designing of some potential new autoimmune disorder inhibitors using crystal structures and Hirshfeld surface analyses in combination with molecular docking and molecular dynamics simulations
Intelligent Pharmacy , , 2023
DOI: 10.1016/j.ipha.2023.11.008

References
[1]. Karakus, S.; Rollas, S. Farmaco 2002, 57 (7), 577-581.
https://doi.org/10.1016/S0014-827X(02)01252-1
[2]. Solomon, V. R.; Haq, W.; Smilkstein, M.; Srivastava, K.; Puri, S. K.; Katti, S. B. Eur. J. Med. Chem. 2010, 45 (11), 4990-4996.
https://doi.org/10.1016/j.ejmech.2010.07.068
[3]. Saeed, A.; Flörke, U.; Erben, M. F. J. Sulphur Chem. 2014, 35 (3), 318-355.
https://doi.org/10.1080/17415993.2013.834904
[4]. Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Z. Chem. 2010, 21 (3), 81-91.
https://doi.org/10.1002/zfch.19810210302
[5]. Mühl, P.; Gloe, K.; Dietze, F.; Hoyer, E.; Beyer, L. Z. Chem. 2010, 26 (3), 81-94.
https://doi.org/10.1002/zfch.19860260302
[6]. Duque, J.; Estevez-Hernandez, O.; Reguera, E.; Ellena, J.; Correa, R. S. J. Coord. Chem. 2009, 62 (17), 2804-2813.
https://doi.org/10.1080/00958970902926795
[7]. Estevez-Hernandez, O.; Duque, J.; Rodríguez-Hernandez, J.; Reguera, E. Polyhedron 2015, 97, 148-156.
https://doi.org/10.1016/j.poly.2015.05.028
[8]. Yesilkaynak, T. J. Therm. Anal. Calorim. 2016, 124 (2), 1029-1037.
https://doi.org/10.1007/s10973-015-5221-9
[9]. Correa, R. S.; de Oliveira, K. M.; Delolo, F. G.; Alvarez, A.; Mocelo, R.; Plutin, A. M.; Cominetti, M. R.; Castellano, E. E.; Batista, A. A. J. Inorg. Biochem. 2015, 150, 63-71.
https://doi.org/10.1016/j.jinorgbio.2015.04.008
[10]. Sternberg, M.; Rust, J.; Lehmann, C. W.; Mohr, F. Helv. Chim. Acta 2013, 96 (2), 280-288.
https://doi.org/10.1002/hlca.201200386
[11]. Hassan, S. S.; Shoukry, M. M.; Shallan, R. N.; van Eldik, R. J. Coord. Chem. 2017, 70 (10), 1761-1775.
https://doi.org/10.1080/00958972.2017.1312357
[12]. Hussain, S.; Imtiaz-ud-Din; Raheel, A.; Hussain, S.; Tahir, M. N.; Hussain, I. J. Coord. Chem. 2020, 73 (7), 1191-1207.
https://doi.org/10.1080/00958972.2020.1771558
[13]. Teixeira, E. I.; Schwalm, C. S.; Casagrande, G. A.; Tirloni, B.; Schwade, V. D. J. Mol. Struct. 2020, 1210 (127999), 127999.
https://doi.org/10.1016/j.molstruc.2020.127999
[14]. Barnard, I.; Koch, K. R.; Gerber, W. J. J. Mol. Struct. 2021, 1244 (131009), 131009.
https://doi.org/10.1016/j.molstruc.2021.131009
[15]. Lapasam, A.; Kollipara, M. R. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195 (10), 779-804.
https://doi.org/10.1080/10426507.2020.1764956
[16]. Ketchemen, K. I. Y.; Khan, M. D.; Mlowe, S.; Akerman, M. P.; Vitorica-Yrezabal, I.; Whitehead, G.; Nyamen, L. D.; Ndifon, P. T.; Revaprasadu, N.; O'Brien, P. J. Mol. Struct. 2021, 1229 (129791), 129791.
https://doi.org/10.1016/j.molstruc.2020.129791
[17]. Cunha, B. N.; Luna-Dulcey, L.; Plutin, A. M.; Silveira, R. G.; Honorato, J.; Cairo, R. R.; de Oliveira, T. D.; Cominetti, M. R.; Castellano, E. E.; Batista, A. A. Inorg. Chem. 2020, 59 (7), 5072-5085.
https://doi.org/10.1021/acs.inorgchem.0c00319
[18]. Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Coord. Chem. Rev. 2021, 427 (213588), 213588.
https://doi.org/10.1016/j.ccr.2020.213588
[19]. Tudor, C. A.; Iliş, M.; Secu, M.; Ferbinteanu, M.; Cîrcu, V. Polyhedron 2022, 211 (115542), 115542.
https://doi.org/10.1016/j.poly.2021.115542
[20]. Mitrea, D. G.; Circu, V. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 258 (119860), 119860.
https://doi.org/10.1016/j.saa.2021.119860
[21]. Plutín, A. M.; Ramos, R.; Mocelo, R.; Alvarez, A.; Castellano, E. E.; Cominetti, M. R.; Oliveira, K. M.; Donizeth de Oliveira, T.; Silva, T. E. M.; S. Correa, R.; Batista, A. A. Polyhedron 2020, 184 (114543), 114543.
https://doi.org/10.1016/j.poly.2020.114543
[22]. Yuan, Y. F.; Wang, J. T.; Gimeno, M. C.; Laguna, A.; Jones, P. G. Inorganica Chim. Acta 2001, 324 (1-2), 309-317.
https://doi.org/10.1016/S0020-1693(01)00661-2
[23]. Zhang, Y. M.; Wei, T. B.; Xian, L.; Gao, L. M. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179 (10), 2007-2013.
https://doi.org/10.1080/10426500490473456
[24]. You-Ming, Z.; Tai-Bao, W.; Xiu-Chun, W.; Su-You, Y. Indian J. Chem. 1998, 37B, 604-606.
[25]. Weiqun, Z.; Baolong, L.; Liming, Z.; Jiangang, D.; Yong, Z.; Lude, L.; Xujie, Y. J. Mol. Struct. 2004, 690 (1-3), 145-150.
https://doi.org/10.1016/j.molstruc.2003.11.029
[26]. Ozer, C. K.; Binzet, G.; Arslan, H. Eur. J. Chem. 2020, 11 (4), 319-323.
https://doi.org/10.5155/eurjchem.11.4.319-323.2047
[27]. Ozer, C. K.; Arslan, H.; VanDerveer, D.; Külcü, N. Molecules 2009, 14 (2), 655-666.
https://doi.org/10.3390/molecules14020655
[28]. Arslan, B., MSc Thesis, Mersin University, Mersin, Turkey, 2017.
[29]. Binzet, G.; Arslan, H.; Flörke, U.; Külcü, N.; Duran, N. J. Coord. Chem. 2006, 59 (12), 1395-1406.
https://doi.org/10.1080/00958970500512633
[30]. Arslan, H.; Flörke, U.; Külcü, N.; Emen, M. F. J. Coord. Chem. 2006, 59 (2), 223-228.
https://doi.org/10.1080/00958970500270992
[31]. Binzet, G.; Gumus, I.; Dogen, A.; Flörke, U.; Kulcu, N.; Arslan, H. J. Mol. Struct. 2018, 1161, 519-529.
https://doi.org/10.1016/j.molstruc.2018.02.073
[32]. Arslan, H.; Flörke, U.; Külcü, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59 (5), o641-o642.
https://doi.org/10.1107/S1600536803007992
[33]. Arslan, H.; Flörke, U.; Külcü, N. J. Chem. Crystallogr. 2003, 33 (12), 919-924.
https://doi.org/10.1023/A:1027429814989
[34]. Ozpozan, N.; Arslan, H.; Ozpozan, T.; Merdivan, M.; Külcü, N. J. Therm. Anal. Calorim. 2000, 61 (3), 955-965.
https://doi.org/10.1023/A:1010171230450
[35]. Solmaz, U.; Gumus, I.; Yilmaz, M. K.; Ince, S.; Arslan, H. Appl. Organomet. Chem. 2021, 35 (10), e6348.
https://doi.org/10.1002/aoc.6348
[36]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726
[37]. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40 (4), 786-790.
https://doi.org/10.1107/S0021889807029238
[38]. Palatinus, L.; van der Lee, A. J. Appl. Crystallogr. 2008, 41 (6), 975-984.
https://doi.org/10.1107/S0021889808028185
[39]. Palatinus, L.; Prathapa, S. J.; van Smaalen, S. J. Appl. Crystallogr. 2012, 45 (3), 575-580.
https://doi.org/10.1107/S0021889812016068
[40]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218
[41]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
[42]. Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913
[43]. Lee, C. T.; Yang, W.T.; Parr, R.G. Phys. Rev. B. 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[44]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016.
[45]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c
[46]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A
[47]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Cryst. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910
[48]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B
[49]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. CrystEngComm 2008, 10 (4), 377-388.
[50]. Jayatilaka, D.; Grimwood, D. J. Tonto: A FORTRAN Based Object-Oriented System for Quantum Chemistry and Crystallography. In Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003; pp 142-151.
https://doi.org/10.1007/3-540-44864-0_15
[51]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, 12, S1-S19.
https://doi.org/10.1039/p298700000s1
[52]. Arslan, H.; Külcü, N.; Flörke, U. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64 (4), 1065-1071.
https://doi.org/10.1016/j.saa.2005.09.016
[53]. Arslan, H.; Florke, U.; Kulcu, N.; Kayhan, E. Turk. J. Chem 2006, 30, 429-440.
[54]. Khawar Rauf, M.; Badshah, A.; Bolte, M. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63 (4), o1676-o1678.
https://doi.org/10.1107/S1600536807010185
[55]. Arslan, H.; Florke, U.; Kulcu, N. Acta Chim. Slov 2004, 51, 787-792.
[56]. Shen, X.; Shi, X.; Kang, B.; Tong, Y.; Liu, Y.; Gu, L.; Liu, Q.; Huang, Y. Polyhedron 1998, 18 (1-2), 33-37.
https://doi.org/10.1016/S0277-5387(98)00264-2
[57]. Yamin, B. M.; Yusof, M. S. M. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59 (2), o151-o152.
https://doi.org/10.1107/S1600536802023711
[58]. Yusof, M. S. M.; Asroh, F. S. M.; Kadir, M. A.; Yamin, B. M. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63 (3), o1190-o1191.
https://doi.org/10.1107/S1600536807001900
[59]. Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97 (6), 1354-1358.
https://doi.org/10.1021/ja00839a011
[60]. Evans, D. G.; Boeyens, J. C. A. Acta Crystallogr. B 1989, 45 (6), 581-590.
https://doi.org/10.1107/S0108768189008190
[61]. Chermette, H. J. Comput. Chem. 1999, 20 (1), 129-154.
https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
[62]. Baumgärtner, A. J. Chem. Phys. 1993, 98 (9), 7496-7501.
https://doi.org/10.1063/1.464689
[63]. Bogolubov, N. N. Jr; Kien, F. L.; Shumovsky, A. S. J. Phys. A Math. Gen. 1986, 19 (2), 191-203.
https://doi.org/10.1088/0305-4470/19/2/015
[64]. Meyer, A. Y. Chem. Soc. Rev. 1986, 15 (4), 449-474.
https://doi.org/10.1039/cs9861500449
[65]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X
[66]. Edwards, A. J.; Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. Faraday Discuss. 2017, 203, 93-112.
https://doi.org/10.1039/C7FD00072C
[67]. Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. In Topics in Current Chemistry Fortschritte der Chemischen Forschung; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 95-170.
https://doi.org/10.1007/3-540-06399-4_6
[68]. Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1833-1840.
https://doi.org/10.1063/1.1740588
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.12.4.439-449.2196

















European Journal of Chemistry 2021, 12(4), 439-449 | doi: https://doi.org/10.5155/eurjchem.12.4.439-449.2196 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.