European Journal of Chemistry

Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide

Crossmark


Main Article Content

Cemal Koray Ozer
Ummuhan Solmaz
Hakan Arslan

Abstract

N-(2-Chlorophenylcarbamothioyl)cyclohexanecarboxamide was characterized by a single crystal X-ray diffraction study. Crystal data for this compound, C14H17ClN2OS; Monoclinic, space group P21/n with Z = 4, a = 5.2385(10) Å, b = 17.902(4) Å, c = 15.021(3) Å, β = 90.86(3)°, = 1408.5(5) Å3T = 153(2) K, μ(MoKα) = 0.413 mm-1Dcalc = 1.400 g/cm3, 9840 reflections measured (7.082° ≤ 2Θ ≤ 50.378°), 2519 unique (Rint = 0.0406, Rsigma = 0.0335) which were used in all calculations. The final R1 was 0.0397 (I > 2σ(I)) and wR2 was 0.0887 (all data). The puckering parameters (q2 = 0.019(3) Å, q3 = 0.578(3) Å, θ = 1.0(3)° and φ = 51(8)°) of the title compound show that the cyclohexane ring adopts a chair conformation. The molecular conformation of the title compound is stabilized by intramolecular hydrogen bonds (N2-H2⋅⋅⋅Cl1, N2-H2⋅⋅⋅O1, and C2-H2A⋅⋅⋅S1) and intermolecular hydrogen bonds (N1-H1⋅⋅⋅S1i and C9-HA⋅⋅⋅S1ii: 2-x, 2-y, 1-z). The intramolecular hydrogen bonds (N2-H2⋅⋅⋅O1 and C2-H2A⋅⋅⋅S1) are also form two pseudo-six-membered rings. Density functional theory optimized structure in the gaseous phase at B3LYP/6-311G(d,p) level of theory has been compared with the experimentally defined molecular structure. The molecular orbitals HOMO and LUMO with the energy gap for the title compound are calculated and the estimated energy gap (ΔE) between the HOMO and LUMO energies levels of the title compound is 3.5399 eV, which implies that the title molecule is very reactive. The Hirshfeld surface analysis reveals that the most important contributions to crystal packing are from H···H (49.0%), H···C/C···H (12.5%), H···Cl/Cl···H (10.9%), and H···S/S···H (10.0%) interactions. The energy-framework calculations are used to analyze and visualize the three-dimensional topology of the crystal packing. The intermolecular energy analysis confirmed a significant contribution of dispersion to the stabilization of molecular packings in the title compound.


icon graph This Abstract was viewed 708 times | icon graph Article PDF downloaded 266 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ozer, C. K.; Solmaz, U.; Arslan, H. Crystal Structure, Hirshfeld Surface Analysis, and DFT Studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide. Eur. J. Chem. 2021, 12, 439-449.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Karakus, S.; Rollas, S. Farmaco 2002, 57 (7), 577-581.
https://doi.org/10.1016/S0014-827X(02)01252-1

[2]. Solomon, V. R.; Haq, W.; Smilkstein, M.; Srivastava, K.; Puri, S. K.; Katti, S. B. Eur. J. Med. Chem. 2010, 45 (11), 4990-4996.
https://doi.org/10.1016/j.ejmech.2010.07.068

[3]. Saeed, A.; Flörke, U.; Erben, M. F. J. Sulphur Chem. 2014, 35 (3), 318-355.
https://doi.org/10.1080/17415993.2013.834904

[4]. Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Z. Chem. 2010, 21 (3), 81-91.
https://doi.org/10.1002/zfch.19810210302

[5]. Mühl, P.; Gloe, K.; Dietze, F.; Hoyer, E.; Beyer, L. Z. Chem. 2010, 26 (3), 81-94.
https://doi.org/10.1002/zfch.19860260302

[6]. Duque, J.; Estevez-Hernandez, O.; Reguera, E.; Ellena, J.; Correa, R. S. J. Coord. Chem. 2009, 62 (17), 2804-2813.
https://doi.org/10.1080/00958970902926795

[7]. Estevez-Hernandez, O.; Duque, J.; Rodríguez-Hernandez, J.; Reguera, E. Polyhedron 2015, 97, 148-156.
https://doi.org/10.1016/j.poly.2015.05.028

[8]. Yesilkaynak, T. J. Therm. Anal. Calorim. 2016, 124 (2), 1029-1037.
https://doi.org/10.1007/s10973-015-5221-9

[9]. Correa, R. S.; de Oliveira, K. M.; Delolo, F. G.; Alvarez, A.; Mocelo, R.; Plutin, A. M.; Cominetti, M. R.; Castellano, E. E.; Batista, A. A. J. Inorg. Biochem. 2015, 150, 63-71.
https://doi.org/10.1016/j.jinorgbio.2015.04.008

[10]. Sternberg, M.; Rust, J.; Lehmann, C. W.; Mohr, F. Helv. Chim. Acta 2013, 96 (2), 280-288.
https://doi.org/10.1002/hlca.201200386

[11]. Hassan, S. S.; Shoukry, M. M.; Shallan, R. N.; van Eldik, R. J. Coord. Chem. 2017, 70 (10), 1761-1775.
https://doi.org/10.1080/00958972.2017.1312357

[12]. Hussain, S.; Imtiaz-ud-Din; Raheel, A.; Hussain, S.; Tahir, M. N.; Hussain, I. J. Coord. Chem. 2020, 73 (7), 1191-1207.
https://doi.org/10.1080/00958972.2020.1771558

[13]. Teixeira, E. I.; Schwalm, C. S.; Casagrande, G. A.; Tirloni, B.; Schwade, V. D. J. Mol. Struct. 2020, 1210 (127999), 127999.
https://doi.org/10.1016/j.molstruc.2020.127999

[14]. Barnard, I.; Koch, K. R.; Gerber, W. J. J. Mol. Struct. 2021, 1244 (131009), 131009.
https://doi.org/10.1016/j.molstruc.2021.131009

[15]. Lapasam, A.; Kollipara, M. R. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195 (10), 779-804.
https://doi.org/10.1080/10426507.2020.1764956

[16]. Ketchemen, K. I. Y.; Khan, M. D.; Mlowe, S.; Akerman, M. P.; Vitorica-Yrezabal, I.; Whitehead, G.; Nyamen, L. D.; Ndifon, P. T.; Revaprasadu, N.; O'Brien, P. J. Mol. Struct. 2021, 1229 (129791), 129791.
https://doi.org/10.1016/j.molstruc.2020.129791

[17]. Cunha, B. N.; Luna-Dulcey, L.; Plutin, A. M.; Silveira, R. G.; Honorato, J.; Cairo, R. R.; de Oliveira, T. D.; Cominetti, M. R.; Castellano, E. E.; Batista, A. A. Inorg. Chem. 2020, 59 (7), 5072-5085.
https://doi.org/10.1021/acs.inorgchem.0c00319

[18]. Nkabyo, H. A.; Barnard, I.; Koch, K. R.; Luckay, R. C. Coord. Chem. Rev. 2021, 427 (213588), 213588.
https://doi.org/10.1016/j.ccr.2020.213588

[19]. Tudor, C. A.; Iliş, M.; Secu, M.; Ferbinteanu, M.; Cîrcu, V. Polyhedron 2022, 211 (115542), 115542.
https://doi.org/10.1016/j.poly.2021.115542

[20]. Mitrea, D. G.; Circu, V. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 258 (119860), 119860.
https://doi.org/10.1016/j.saa.2021.119860

[21]. Plutín, A. M.; Ramos, R.; Mocelo, R.; Alvarez, A.; Castellano, E. E.; Cominetti, M. R.; Oliveira, K. M.; Donizeth de Oliveira, T.; Silva, T. E. M.; S. Correa, R.; Batista, A. A. Polyhedron 2020, 184 (114543), 114543.
https://doi.org/10.1016/j.poly.2020.114543

[22]. Yuan, Y. F.; Wang, J. T.; Gimeno, M. C.; Laguna, A.; Jones, P. G. Inorganica Chim. Acta 2001, 324 (1-2), 309-317.
https://doi.org/10.1016/S0020-1693(01)00661-2

[23]. Zhang, Y. M.; Wei, T. B.; Xian, L.; Gao, L. M. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179 (10), 2007-2013.
https://doi.org/10.1080/10426500490473456

[24]. You-Ming, Z.; Tai-Bao, W.; Xiu-Chun, W.; Su-You, Y. Indian J. Chem. 1998, 37B, 604-606.

[25]. Weiqun, Z.; Baolong, L.; Liming, Z.; Jiangang, D.; Yong, Z.; Lude, L.; Xujie, Y. J. Mol. Struct. 2004, 690 (1-3), 145-150.
https://doi.org/10.1016/j.molstruc.2003.11.029

[26]. Ozer, C. K.; Binzet, G.; Arslan, H. Eur. J. Chem. 2020, 11 (4), 319-323.
https://doi.org/10.5155/eurjchem.11.4.319-323.2047

[27]. Ozer, C. K.; Arslan, H.; VanDerveer, D.; Külcü, N. Molecules 2009, 14 (2), 655-666.
https://doi.org/10.3390/molecules14020655

[28]. Arslan, B., MSc Thesis, Mersin University, Mersin, Turkey, 2017.

[29]. Binzet, G.; Arslan, H.; Flörke, U.; Külcü, N.; Duran, N. J. Coord. Chem. 2006, 59 (12), 1395-1406.
https://doi.org/10.1080/00958970500512633

[30]. Arslan, H.; Flörke, U.; Külcü, N.; Emen, M. F. J. Coord. Chem. 2006, 59 (2), 223-228.
https://doi.org/10.1080/00958970500270992

[31]. Binzet, G.; Gumus, I.; Dogen, A.; Flörke, U.; Kulcu, N.; Arslan, H. J. Mol. Struct. 2018, 1161, 519-529.
https://doi.org/10.1016/j.molstruc.2018.02.073

[32]. Arslan, H.; Flörke, U.; Külcü, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59 (5), o641-o642.
https://doi.org/10.1107/S1600536803007992

[33]. Arslan, H.; Flörke, U.; Külcü, N. J. Chem. Crystallogr. 2003, 33 (12), 919-924.
https://doi.org/10.1023/A:1027429814989

[34]. Ozpozan, N.; Arslan, H.; Ozpozan, T.; Merdivan, M.; Külcü, N. J. Therm. Anal. Calorim. 2000, 61 (3), 955-965.
https://doi.org/10.1023/A:1010171230450

[35]. Solmaz, U.; Gumus, I.; Yilmaz, M. K.; Ince, S.; Arslan, H. Appl. Organomet. Chem. 2021, 35 (10), e6348.
https://doi.org/10.1002/aoc.6348

[36]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[37]. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40 (4), 786-790.
https://doi.org/10.1107/S0021889807029238

[38]. Palatinus, L.; van der Lee, A. J. Appl. Crystallogr. 2008, 41 (6), 975-984.
https://doi.org/10.1107/S0021889808028185

[39]. Palatinus, L.; Prathapa, S. J.; van Smaalen, S. J. Appl. Crystallogr. 2012, 45 (3), 575-580.
https://doi.org/10.1107/S0021889812016068

[40]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[41]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

[42]. Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[43]. Lee, C. T.; Yang, W.T.; Parr, R.G. Phys. Rev. B. 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[44]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016.

[45]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c

[46]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[47]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Cryst. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[48]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[49]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. CrystEngComm 2008, 10 (4), 377-388.

[50]. Jayatilaka, D.; Grimwood, D. J. Tonto: A FORTRAN Based Object-Oriented System for Quantum Chemistry and Crystallography. In Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003; pp 142-151.
https://doi.org/10.1007/3-540-44864-0_15

[51]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, 12, S1-S19.
https://doi.org/10.1039/p298700000s1

[52]. Arslan, H.; Külcü, N.; Flörke, U. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64 (4), 1065-1071.
https://doi.org/10.1016/j.saa.2005.09.016

[53]. Arslan, H.; Florke, U.; Kulcu, N.; Kayhan, E. Turk. J. Chem 2006, 30, 429-440.

[54]. Khawar Rauf, M.; Badshah, A.; Bolte, M. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63 (4), o1676-o1678.
https://doi.org/10.1107/S1600536807010185

[55]. Arslan, H.; Florke, U.; Kulcu, N. Acta Chim. Slov 2004, 51, 787-792.

[56]. Shen, X.; Shi, X.; Kang, B.; Tong, Y.; Liu, Y.; Gu, L.; Liu, Q.; Huang, Y. Polyhedron 1998, 18 (1-2), 33-37.
https://doi.org/10.1016/S0277-5387(98)00264-2

[57]. Yamin, B. M.; Yusof, M. S. M. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59 (2), o151-o152.
https://doi.org/10.1107/S1600536802023711

[58]. Yusof, M. S. M.; Asroh, F. S. M.; Kadir, M. A.; Yamin, B. M. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63 (3), o1190-o1191.
https://doi.org/10.1107/S1600536807001900

[59]. Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97 (6), 1354-1358.
https://doi.org/10.1021/ja00839a011

[60]. Evans, D. G.; Boeyens, J. C. A. Acta Crystallogr. B 1989, 45 (6), 581-590.
https://doi.org/10.1107/S0108768189008190

[61]. Chermette, H. J. Comput. Chem. 1999, 20 (1), 129-154.
https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

[62]. Baumgärtner, A. J. Chem. Phys. 1993, 98 (9), 7496-7501.
https://doi.org/10.1063/1.464689

[63]. Bogolubov, N. N. Jr; Kien, F. L.; Shumovsky, A. S. J. Phys. A Math. Gen. 1986, 19 (2), 191-203.
https://doi.org/10.1088/0305-4470/19/2/015

[64]. Meyer, A. Y. Chem. Soc. Rev. 1986, 15 (4), 449-474.
https://doi.org/10.1039/cs9861500449

[65]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X

[66]. Edwards, A. J.; Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. Faraday Discuss. 2017, 203, 93-112.
https://doi.org/10.1039/C7FD00072C

[67]. Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. In Topics in Current Chemistry Fortschritte der Chemischen Forschung; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 95-170.
https://doi.org/10.1007/3-540-06399-4_6

[68]. Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1833-1840.
https://doi.org/10.1063/1.1740588

Most read articles by the same author(s)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >> 
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).