European Journal of Chemistry

Synthesis, characterization and Hirshfeld surface analysis of 2-aminobenzothiazol with 4-fluorobenzoic acid co-crystal

Crossmark


Main Article Content

Bubun Banerjee
Varun Sharma
Aditi Sharma
Gurpreet Kaur
Vivek Kumar Gupta

Abstract

The co-crystal of 2-aminobenzothiazol with 4-fluorobenzoic acid were synthesized and characterized by elemental analyses, spectral studies (FT-IR, NMR, HRMS) and single-crystal X-ray diffraction analysis. This compound co-crystallizes in the monoclinic space group P21/c (no. 14), a = 11.7869(14) Å, b = 4.0326(5) Å, c = 27.625(3) Å, β = 92.731(10)°, = 1311.6(3) Å3, Z = 4, T = 293(2) K, μ(CuKα) = 2.345 mm-1, Dcalc = 1.470 g/cm3, 3568 reflections measured (7.508° ≤ 2Θ ≤ 134.202°), 2280 unique (Rint = 0.0262, Rsigma = 0.0413) which were used in all calculations. The final R1 was 0.0446 (I > 2σ(I)) and wR2 was 0.1274 (all data). The crystal structure is stabilized by elaborate system of N–H···O and O-H···O hydrogen bonds to form supramolecular structures. Furthermore, the 3D Hirshfeld surfaces and the associated 2D fingerprint plots have been analyzed for molecular interactions.


icon graph This Abstract was viewed 799 times | icon graph Article PDF downloaded 169 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Banerjee, B.; Sharma, V.; Sharma, A.; Kaur, G.; Gupta, V. K. Synthesis, Characterization and Hirshfeld Surface Analysis of 2-Aminobenzothiazol With 4-Fluorobenzoic Acid Co-Crystal. Eur. J. Chem. 2022, 13, 206-213.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hong, Y.-L.; Manjunatha Reddy, G. N.; Nishiyama, Y. Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 2020, 106, 101651.
https://doi.org/10.1016/j.ssnmr.2020.101651

[2]. Curatolo, W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technolo. Today 1998, 1, 387-393.
https://doi.org/10.1016/S1461-5347(98)00097-2

[3]. Childs, S. L.; Chyall, L. J.; Dunlap, J. T.; Smolenskaya, V. N.; Stahly, B. C.; Stahly, G. P. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J. Am. Chem. Soc. 2004, 126, 13335-13342.
https://doi.org/10.1021/ja048114o

[4]. Schmidt, J.; Snipes, W. Free radical formation in a gamma-irradiated pyrimidine-purine co-crystal complex. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1967, 13, 101-109.
https://doi.org/10.1080/09553006814550011

[5]. Etter, M. C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601-4610.
https://doi.org/10.1021/j100165a007

[6]. Panunto, T. W.; Urbanczyk-Lipkowska, Z.; Johnson, R.; Etter, M. C. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials. J. Am. Chem. Soc. 1987, 109, 7786-7797.
https://doi.org/10.1021/ja00259a030

[7]. Etter, M. C.; Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W. Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas. J. Am. Chem. Soc. 1990, 112, 8415-8426.
https://doi.org/10.1021/ja00179a028

[8]. Etter, M. C.; Reutzel, S. M.; Choo, C. G. Self-organization of adenine and thymine in the solid state. J. Am. Chem. Soc. 1993, 115, 4411-4412.
https://doi.org/10.1021/ja00063a089

[9]. Vishweshwar, P.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J. Pharmaceutical co-crystals. J. Pharm. Sci. 2006, 95, 499-516.
https://doi.org/10.1002/jps.20578

[10]. Jayasankar, A.; Somwangthanaroj, A.; Shao, Z. J.; Rodríguez-Hornedo, N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm. Res. 2006, 23, 2381-2392.
https://doi.org/10.1007/s11095-006-9110-6

[11]. Sokolov, A. N.; Friscić, T.; MacGillivray, L. R. Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. J. Am. Chem. Soc. 2006, 128, 2806-2807.
https://doi.org/10.1021/ja057939a

[12]. Papaefstathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R. Coordination-driven self-assembly directs a single-crystal-to-single-crystal transformation that exhibits photocontrolled fluorescence. J. Am. Chem. Soc. 2004, 126, 9158-9159.
https://doi.org/10.1021/ja047819n

[13]. Cheney, M. L.; McManus, G. J.; Perman, J. A.; Wang, Z.; Zaworotko, M. J. The role of cocrystals in solid-state synthesis: Cocrystal-controlled solid-state synthesis of imides. Cryst. Growth Des. 2007, 7, 616-617.
https://doi.org/10.1021/cg0701729

[14]. Friščić, T.; MacGillivray, L. R. Reversing the code of a template-directed solid-state synthesis: a bipyridine template that directs a single-crystal-to-single-crystal [2 + 2] photodimerisation of a dicarboxylic acid. Chem. Commun. (Camb.) 2005, 5748-5750.
https://doi.org/10.1039/b510081j

[15]. Kim, J. H.; Lindeman, S. V.; Kochi, J. K. Charge-transfer forces in the self-assembly of heteromolecular reactive solids: successful design of unique (single-crystal-to-single-crystal) Diels--Alder cycloadditions. J. Am. Chem. Soc. 2001, 123, 4951-4959.
https://doi.org/10.1021/ja010108u

[16]. Gao, X.; Friscić, T.; MacGillivray, L. R. Supramolecular construction of molecular ladders in the solid state. Angew. Chem. Int. Ed Engl. 2004, 43, 232-236.
https://doi.org/10.1002/anie.200352713

[17]. Al-Tel, T. H.; Al-Qawasmeh, R. A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem. 2011, 46, 1874-1881.
https://doi.org/10.1016/j.ejmech.2011.02.051

[18]. Lee, Y.-R.; Jin, G. H.; Lee, S.-M.; Park, J.-W.; Ryu, J.-H.; Jeon, R.; Park, B.-H. Inhibition of TNF-α-mediated inflammatory responses by a benzodioxolylacetylamino-linked benzothiazole analog in human fibroblast-like synoviocytes. Biochem. Biophys. Res. Commun. 2011, 408, 625-629.
https://doi.org/10.1016/j.bbrc.2011.04.073

[19]. Kamal, A.; Srikanth, Y. V. V.; Naseer Ahmed Khan, M.; Ashraf, M.; Kashi Reddy, M.; Sultana, F.; Kaur, T.; Chashoo, G.; Suri, N.; Sehar, I.; Wani, Z. A.; Saxena, A.; Sharma, P. R.; Bhushan, S.; Mondhe, D. M.; Saxena, A. K. 2-Anilinonicotinyl linked 2-aminobenzothiazoles and [1,2,4]triazolo [1,5-b] [1,2,4]benzothiadiazine conjugates as potential mitochondrial apoptotic inducers. Bioorg. Med. Chem. 2011, 19, 7136-7150.
https://doi.org/10.1016/j.bmc.2011.09.060

[20]. Kamal, A.; Reddy, K. S.; Khan, M. N. A.; Shetti, R. V. C. R. N. C.; Ramaiah, M. J.; Pushpavalli, S. N. C. V. L.; Srinivas, C.; Pal-Bhadra, M.; Chourasia, M.; Sastry, G. N.; Juvekar, A.; Zingde, S.; Barkume, M. Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole-pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. 2010, 18, 4747-4761.
https://doi.org/10.1016/j.bmc.2010.05.007

[21]. Choi, M.-M.; Kim, E.-A.; Hahn, H.-G.; Nam, K. D.; Yang, S.-J.; Choi, S. Y.; Kim, T. U.; Cho, S.-W.; Huh, J.-W. Protective effect of benzothiazole derivative KHG21834 on amyloid beta-induced neurotoxicity in PC12 cells and cortical and mesencephalic neurons. Toxicology 2007, 239, 156-166.
https://doi.org/10.1016/j.tox.2007.07.010

[22]. Sharma, P. C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D. P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem. 2013, 28, 240-266.
https://doi.org/10.3109/14756366.2012.720572

[23]. Deng, X.-Q.; Song, M.-X.; Wei, C.-X.; Li, F.-N.; Quan, Z.-S. Synthesis and anticonvulsant activity of 7-alkoxy-triazolo-[3, 4-b]benzo[d]thiazoles. Med. Chem. 2010, 6, 313-320.
https://doi.org/10.2174/157340610793358855

[24]. Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J. C.; Boireau, A.; Bour, Y.; Coléno, M. A.; Doble, A.; Doerflinger, G.; Huu, C. D.; Donat, M. H.; Duchesne, J. M.; Ganil, P.; Guérémy, C.; Honor, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P. M.; Le Blevec, J.; Meunier, M.; Miquet, J. M.; Nemecek, C.; Mignani, S. Riluzole series. Synthesis and in vivo "antiglutamate" activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem. 1999, 42, 2828-2843.
https://doi.org/10.1021/jm980202u

[25]. Bowyer, P. W.; Gunaratne, R. S.; Grainger, M.; Withers-Martinez, C.; Wickramsinghe, S. R.; Tate, E. W.; Leatherbarrow, R. J.; Brown, K. A.; Holder, A. A.; Smith, D. F. Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum. Biochem. J. 2007, 408, 173-180.
https://doi.org/10.1042/BJ20070692

[26]. Huang, Q.; Mao, J.; Wan, B.; Wang, Y.; Brun, R.; Franzblau, S. G.; Kozikowski, A. P. Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles. J. Med. Chem. 2009, 52, 6757-6767.
https://doi.org/10.1021/jm901112f

[27]. Kaur, G.; Moudgil, R.; Shamim, M.; Gupta, V. K.; Banerjee, B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. Synth. Commun. 2021, 51, 1100-1120.
https://doi.org/10.1080/00397911.2020.1870043

[28]. Sharma, V.; Kaur, G.; Singh, A.; Banerjee, B.; Gupta, V. K. Synthesis and characterization of 2-aminobenzothiazol and 1-methylisatin co-Сrystal. Crystallogr. Rep. 2020, 65, 1195-1201.
https://doi.org/10.1134/S1063774520070172

[29]. Sharma, V.; Karmakar, I.; Brahmachari, G.; Gupta, V. K. Synthesis, spectroscopic characterization, crystal structure, theoretical (DFT) studies and molecular docking analysis of biologically potent isopropyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate. Mol. Cryst. Liq. Cryst. 2022, 1-22.
https://doi.org/10.1080/15421406.2021.2024041

[30]. Sharma, V.; Slathia, N.; Mahajan, S.; Kapoor, K. K.; Gupta, V. K. Synthesis, characterization, crystal structure, molecular docking analysis and other physico-chemical properties of (E)-2-(3,4-dimethoxystyryl)quinoline. Polycycl. Aromat. Compd. 2021, 1-25.
https://doi.org/10.1080/10406638.2021.1996409

[31]. Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V. K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino) indolin-2-one derivatives in water at room temperature. Curr. Org. Chem. 2019, 23, 1778-1788.
https://doi.org/10.2174/1385272822666190924182538

[32]. Sharma, P.; Subbulakshmi, K. N.; Narayana, B.; Sarojini, B. K.; Kant, R. Crystal structure of 2-(thiophen-2-yl)-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)ethenyl]benzamide : N,N-dimethylformamide (1 : 1). Crystallogr. Rep. 2016, 61, 230-233.
https://doi.org/10.1134/S106377451602022X

[33]. Sharma, A.; Nurjamal, K.; Banerjee, B.; Brahmachari, G.; Gupta, V. K. Synthesis, characterization, and crystal structure of 5'-amino-4,4''-dichloro-2'-Nitro-2',3'-dihydro-[1,1':3',1''-terphenyl]-4',4',6'(1'H)-tricarbonitrile-dimethyl sulfoxide. Crystallogr. Rep. 2020, 65, 1208-1211.
https://doi.org/10.1134/S1063774520070196

[34]. Sharma, V.; Banerjee, B.; Sharma, A.; Gupta, V. K. Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking studies of DMSO/H2O solvate of 5-chlorospiro[indoline-3,7'-pyrano [3,2-c:5,6-c']dichromene]-2,6',8'-trione. Eur. J. Chem. 2021, 12, 382-388.
https://doi.org/10.5155/eurjchem.12.4.382-388.2141

[35]. Sharma, V.; Banerjee, B.; Kaur, G.; Gupta, V. K. X-ray crystal structure analysis of 5-bromospiro[indoline-3,7'-pyrano[3,2-C:5,6-C']dichrome ne]-2,6',8'-trione. Eur. J. Chem. 2021, 12, 187-191.
https://doi.org/10.5155/eurjchem.12.2.187-191.2086

[36]. Sharma, N.; Brahmachari, G.; Banerjee, B.; Kant, R.; Gupta, V. K. 6-Amino-3-methyl-4-(3,4,5-tri-meth-oxy-phen-yl)-2,4-di-hydro-pyrano [2,3-c]pyrazole-5-carbo-nitrile. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70, o875-6.
https://doi.org/10.1107/S1600536814015670

[37]. Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun. 2020, 50, 1545-1560.
https://doi.org/10.1080/00397911.2020.1745844

[38]. Sharma, N.; Brahmachari, G.; Banerjee, B.; Kant, R.; Gupta, V. K. Ethyl 6-amino-5-cyano-4-phenyl-2,4-di-hydro-pyrano[2,3-c]pyrazole-3-carboxyl-ate dimethyl sulfoxide monosolvate. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70, o795-6.
https://doi.org/10.1107/S1600536814013270

[39]. Singh, A.; Kaur, G.; Kaur, A.; Gupta, V. K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem. 2020, 7, 128-140.
https://doi.org/10.2174/2213346107666200228125715

[40]. Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V. K.; Banerjee, B. Mandelic acid: An efficient organo-catalyst for the synthesis of 3-substituted-3- hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. organocatalysis 2021, 8, 147-159.
https://doi.org/10.2174/2213337207999200713145440

[41]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[42]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[43]. Nardelli, M. PARST95 - an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Crystallogr. 1995, 28, 659-659.
https://doi.org/10.1107/S0021889895007138

[44]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[45]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[46]. Farrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[47]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Guy Orpen, A.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2 1987, S1-S19.
https://doi.org/10.1039/p298700000s1

[48]. Jin, S.; Yan, P.; Wang, D.; Xu, Y.; Jiang, Y.; Hu, L. Salt and co-crystal formation from 6-bromobenzo[d]thiazol-2-amine and different carboxylic acid derivatives. J. Mol. Struct. 2012, 1016, 55-63.
https://doi.org/10.1016/j.molstruc.2012.02.036

[49]. Colapietro, M.; Domenicano, A.; Pela Ceccarini, G. Structural studies of benzene derivatives. V. The crystal and molecular structure of p-fluorobenzoic acid. Acta Crystallogr. B 1979, 35, 890-894.
https://doi.org/10.1107/S0567740879005124

[50]. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555-1573.
https://doi.org/10.1002/anie.199515551

[51]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[52]. Hoffmann Solids and surfaces - a chemist's view of bonding in extended structures; John Wiley & Sons: Milton, QLD, Australia, 1989.
https://doi.org/10.21236/ADA196638

[53]. McKinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chemistry 1998, 4, 2136-2141.
https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G

[54]. Edwards, A. J.; Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. Intermolecular interactions in molecular crystals: what's in a name? Faraday Discuss. 2017, 203, 93-112.
https://doi.org/10.1039/C7FD00072C

[55]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).