European Journal of Chemistry

Green synthesis and structural characterisation of a novel tetraoxadisiladiborocane-bridged thiadiazole oligomer and its transformation into a hydrogen-bonded 1D polymer

Crossmark


Main Article Content

Okpara Sergeant Bull
Ngozi Jane Maduelosi
Ihesinachi Appolonia Kalagbor

Abstract

This study reports on the synthesis and characterization of novel cyclodiboradisiloxane derivatives. A one-pot 2+2 cyclo-condensation reaction of diphenylsilanediol and phenylboronic acid produced an eight-membered 2,2,4,6,6,8-hexaphenyl-1,3,5,7,2,6,4,8-tetraoxadisiladiborocane (Ph6B2Si2O4) (3). The reaction of compound 3 with 3,5-di-(3-pyridyl)-1,2,4-thiadiazole (L) and phenylboronic acid produced an oligomer (4) and a hydrogen-bonded-induced 1D polymer (5), respectively. Products (4 and 5) have been characterized by melting point, FT-IR spectroscopy, nuclear magnetic resonance, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction revealed triclinic crystal systems with centrosymmetric space group for compounds 4 and 5. On the other hand, the hydrogen-bonded induced 1D polymer [Ph6B2Si2O4]·2L·2[PhB(OH)2] is colourless blocky cocrystals which also crystallized in the triclinic crystal system with a centrosymmetric space group of P-1. These two novel products (4 and 5) exhibit various intermolecular and intramolecular π-π non-covalent interactions and hydrogen bonds in their crystal packing. Compound 4 shows intramolecular non-covalent C-H···π (3.427 Å), C-H···N (2.601 and 2.684 Å), C-H···O (2.360 and 2.684 Å), C-H···S (2.601 Å and 2.701 Å) interactions in its crystal packings. In addition, compound 4 also displays some intermolecular short distance non-covalent interactions in its crystal packing such as π centroid···π centroid (3.805 Å) and C-H17A···π centroid (3.112 Å). On the other hand, the crystal packing of compound 5 also shows intra-molecular non-covalent C-H···π 3.440 Å, C-H···N 2.563 Å, C-H···O 2.654 Å, C-H···S 2.876 Å and H···B 2.939 Å interactions. Furthermore, compound 5 also exhibits short noncovalent intermolecular interactions in its crystal packing such as π···π, (3.362 Å, C14-C3 and 3.243, C11-C37), CH···π (2.587 Å, CH37A···πC38 and 2.452 Å, H7A···O42). The individual molecules of compounds 4 and 5 interact intermolecularly via C-H···N, C-H···O, C-H···S and N-B. Therefore, this study demonstrates the potential for the production of novel materials via the combination of cyclodiboradisiloxane (a Lewis acid) and a nitrogen-, oxygen-, and sulphur-containing ligand (a Lewis bases).


icon graph This Abstract was viewed 9 times | icon graph Article PDF downloaded 1 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Bull, O. S.; Maduelosi, N. J.; Kalagbor, I. A. Green Synthesis and Structural Characterisation of a Novel Tetraoxadisiladiborocane-Bridged Thiadiazole Oligomer and Its Transformation into a Hydrogen-Bonded 1D Polymer. Eur. J. Chem. 2025, 16, 345-355.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Cruz‐Huerta, J.; Campillo‐Alvarado, G.; Höpfl, H.; Rodríguez‐Cuamatzi, P.; Reyes‐Márquez, V.; Guerrero‐Álvarez, J.; Salazar‐Mendoza, D.; Farfán‐García, N. Self‐Assembly of Triphenylboroxine and the Phenylboronic Ester of Pentaerythritol with Piperazine, trans‐1,4‐Diaminocyclohexane, and 4‐Aminopyridine. Eur. J. Inorg. Chem. 2015, 2016 (3), 355-365.
https://doi.org/10.1002/ejic.201501121

[2]. Gibbins, J.; Chalmers, H. Carbon capture and storage. Energy. Policy. 2008, 36 (12), 4317-4322.
https://doi.org/10.1016/j.enpol.2008.09.058

[3]. Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells. Chem. Mater. 2020, 32 (3), 1308-1314.
https://doi.org/10.1021/acs.chemmater.9b04997

[4]. Dou, C.; Liu, J.; Wang, L. Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells. Sci. China. Chem. 2017, 60 (4), 450-459.
https://doi.org/10.1007/s11426-016-0503-x

[5]. Kawano, Y.; Ito, Y.; Ito, S.; Tanaka, K.; Chujo, Y. π-Conjugated Copolymers Composed of Boron Formazanate and Their Application for a Wavelength Converter to Near-Infrared Light. Macromolecules 2021, 54 (4), 1934-1942.
https://doi.org/10.1021/acs.macromol.0c02315

[6]. Bull, O. S.; Don-Lawson, C.; Nweke-Maraizu, U. Synthesis and Characterization of a Novel Eight-Membered Cyclo-1,3,3,5,7,7-Hexaphenyl-1,5-Dibora-3,7-Disiloxane and 4,4ˈ-Bipyridine, 1D Adduct. Eur. J. Chem. 2024, 15 (3), 232-238.
https://doi.org/10.5155/eurjchem.15.3.232-238.2545

[7]. Chen, L.; Furukawa, K.; Gao, J.; Nagai, A.; Nakamura, T.; Dong, Y.; Jiang, D. Photoelectric Covalent Organic Frameworks: Converting Open Lattices into Ordered Donor-Acceptor Heterojunctions. J. Am. Chem. Soc. 2014, 136 (28), 9806-9809.
https://doi.org/10.1021/ja502692w

[8]. Christinat, N.; Croisier, E.; Scopelliti, R.; Cascella, M.; Röthlisberger, U.; Severin, K. Formation of Boronate Ester Polymers with Efficient Intrastrand Charge‐Transfer Transitions by Three‐Component Reactions. Eur. J. Inorg. Chem. 2007, 2007 (33), 5177-5181.
https://doi.org/10.1002/ejic.200700723

[9]. Gopalakrishnan, M.; Viswanathan, T.; David, E.; Thirumoorthy, K.; Bhuvanesh, N. S.; Palanisami, N. Second-order nonlinear optical properties of eight-membered centrosymmetric cyclic borasiloxanes. New. J. Chem. 2019, 43 (27), 10948-10958.
https://doi.org/10.1039/C9NJ01611B

[10]. Liu, K.; Lalancette, R. A.; Jäkle, F. Tuning the Structure and Electronic Properties of B-N Fused Dipyridylanthracene and Implications on the Self-Sensitized Reactivity with Singlet Oxygen. J. Am. Chem. Soc. 2019, 141 (18), 7453-7462.
https://doi.org/10.1021/jacs.9b01958

[11]. Yu, C.; Huang, C.; Tan, C. A Review of CO2 Capture by Absorption and Adsorption. Aerosol. Air. Qual. Res. 2012, 12 (5), 745-769.
https://doi.org/10.4209/aaqr.2012.05.0132

[12]. Bull, O. S.; Don-Lawson, C. Facile Heck coupling synthesis and characterization of a novel tris(4-(pyridine-4-vinyl)phenyl) methylsilane tridentate core. Eur. J. Chem. 2024, 15 (1), 71-73.
https://doi.org/10.5155/eurjchem.15.1.71-73.2505

[13]. Bull, O. S.; Don-Lawson, C.; Ahuchaogu, A. A. Synthesis of an Eight-Membered 2,2,4,6,6,8-Hexaphenyl-1,3,5,7,2,6,4,8-Tetraoxadisiladi borocane and Its Reaction with 4,4-Azo-Pyridine Leading to Ring Contraction to Give a Dimer and Hydrogen Bonded Macrocyclic Siloxane-Azo-Pyridine. Eur. J. Chem. 2025, 16 (1), 37-45.
https://doi.org/10.5155/eurjchem.16.1.37-45.2608

[14]. Gon, M.; Tanaka, K.; Chujo, Y. Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. Bull. Chem. Soc. Japan 2018, 92 (1), 7-18.
https://doi.org/10.1246/bcsj.20180245

[15]. Bull, O. S.; Don-Lawson, C. Synthesis and Crystal Structure Determination of a New 1D Polymer Adduct of 1,2-Di(Pyridin-4-Yl)Ethane, Based on B-N Dative Bonded Eight-Membered Cyclo-1,3,3,5,7,7-Hexaphenyl-1,5-Dibora-3,7-Disiloxane. Eur. J. Chem. 2024, 15 (4), 325-331.
https://doi.org/10.5155/eurjchem.15.4.325-331.2597

[16]. Beckett, M. A.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A.; Owen, P.; Varma, K. S. Cyclo-Boratrisiloxane and Cyclo-Diboratetrasiloxane Derivatives and Their Reactions with Amines: Crystal and Molecular Structure of (p-BrC6H4BO)2(Ph2SiO)2. J. Organomet. Chem. 2000, 595 (2), 241-247.
https://doi.org/10.1016/S0022-328X(99)00631-2

[17]. Gopalakrishnan, M.; Thirumoorthy, K.; Bhuvanesh, N. S.; Palanisami, N. Eight membered cyclic-borasiloxanes: synthesis, structural, photophysical, steric strain and DFT calculations. RSC. Adv. 2016, 6 (61), 55698-55709.
https://doi.org/10.1039/C6RA02080A

[18]. Saha, S.; Kottalanka, R. K.; Panda, T. K.; Harms, K.; Dehnen, S.; Nayek, H. P. Syntheses, characterization and reactivity of Lewis acid-base adducts based on B-N dative bonds. J. Organometal. Chem. 2013, 745-746, 329-334.
https://doi.org/10.1016/j.jorganchem.2013.08.022

[19]. Liu, W.; Pink, M.; Lee, D. Conjugated Polymer Sensors Built on π-Extended Borasiloxane Cages. J. Am. Chem. Soc. 2009, 131 (24), 8703-8707.
https://doi.org/10.1021/ja902333p

[20]. Celis, N. A.; Godoy‐Alcántar, C.; Guerrero‐Álvarez, J.; Barba, V. Boron Macrocycles Based on Multicomponent Assemblies using (3‐Aminophenyl)boronic Acid and Pentaerythritol as Common Reagents; Molecular Receptors toward Lewis Bases. Eur. J. Inorg. Chem. 2014, 2014 (9), 1477-1484.
https://doi.org/10.1002/ejic.201301450

[21]. Korich, A. L.; Iovine, P. M. Boroxine chemistry and applications: A perspective. Dalton. Trans. 2010, 39 (6), 1423-1431.
https://doi.org/10.1039/B917043J

[22]. Wang, D.; Niu, Y.; Wang, Y.; Han, J.; Feng, S. Tetrahedral silicon-centered imidazolyl derivatives: Promising candidates for OLEDs and fluorescence response of Ag (I) ion. J. Organometal. Chem. 2010, 695 (21), 2329-2337.
https://doi.org/10.1016/j.jorganchem.2010.06.026

[23]. Fung, T. H.; Wong, C.; Tang, W.; Leung, M.; Low, K.; Yam, V. W. Photochromic dithienylethene-containing four-coordinate boron(iii) compounds with a spirocyclic scaffold. Chem. Commun. 2022, 58 (26), 4231-4234.
https://doi.org/10.1039/D2CC00107A

[24]. Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. Chem. Mater. 2013, 25 (9), 1542-1548.
https://doi.org/10.1021/cm303751n

[25]. Bull, O. S.; Bull, I.; Amadi, G. K.; Obaalologhi Odu, C.; Okpa, E. O. A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Orient. J. Chem. 2022, 38 (3), 490-516.
https://doi.org/10.13005/ojc/380301

[26]. Bull, O.; Bull, I.; Amadi, G. Global Warming and Technologies for Carbon Capture and Storage. J. Appl. Sci. Environ. Manag. JASEM. 2020, 24 (9), 1671-1686.
https://doi.org/10.4314/jasem.v24i9.27

[27]. Bull, O. Solvothermal Synthesis and Characterization of a New 3D Potassium Metal-Organic Framework (MOF) Structure. J. Chem. Soc. Nigeria 2020, 45 (1), 126-134. https://journals.chemsociety.org.ng/index.php/jcsn/article/view/434

[28]. Yincheng, G.; Zhenqi, N.; Wenyi, L. Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy. Procedia. 2011, 4, 512-518.
https://doi.org/10.1016/j.egypro.2011.01.082

[29]. Turker, L.; Gumus, S.; Atalar, T. Structural and Molecular Orbital Properties of Some Boroxine Derivatives-A Theoretical Study. Bull. Korean Chem. Soc. 2009, 30 (10), 2233-2239. https://doi.org/10.5012/bkcs.2009.30.10.2233
https://doi.org/10.5012/bkcs.2009.30.10.2233

[30]. Shivakumara, N.; Murali Krishna, P. Synthesis, spectral characterization and DNA interactions of 5-(4-substituted phenyl)-1,3,4-thiadiazol-2-amine scaffolds. J. Mol. Struc. 2020, 1199, 126999.
https://doi.org/10.1016/j.molstruc.2019.126999

[31]. Ibrahim, S. A.; Salem, M. M.; Elsalam, H. A.; Noser, A. A. Design, synthesis, in-silico and biological evaluation of novel 2-Amino-1,3,4-thiadiazole based hydrides as B-cell lymphoma-2 inhibitors with potential anticancer effects. J. Mol. Struc. 2022, 1268, 133673.
https://doi.org/10.1016/j.molstruc.2022.133673

[32]. Stecoza, C. E.; Nitulescu, G. M.; Draghici, C.; Caproiu, M. T.; Hanganu, A.; Olaru, O. T.; Mihai, D. P.; Bostan, M.; Mihaila, M. Synthesis of 1,3,4-Thiadiazole Derivatives and Their Anticancer Evaluation. IJMS. 2023, 24 (24), 17476.
https://doi.org/10.3390/ijms242417476

[33]. Aragoni, M. C.; Arca, M.; Coles, S. J.; Crespo Alonso, M.; Coles (née Huth), S. L.; Davies, R. P.; Hursthouse, M. B.; Isaia, F.; Lai, R.; Lippolis, V. Coordination polymers and polygons using di-pyridyl-thiadiazole spacers and substituted phosphorodithioato NiIIcomplexes: potential and limitations for inorganic crystal engineering. CrystEngComm. 2016, 18 (30), 5620-5629.
https://doi.org/10.1039/C6CE00991C

[34]. Correia, P.; Araújo, P.; Plácido, A.; Pereira, A. R.; Bessa, L. J.; Mateus, N.; de Freitas, V.; Oliveira, J.; Fernandes, I. Light-activated amino-substituted dyes as dual-action antibacterial agents: Bio-efficacy and AFM evaluation. Dyes Pigments 2024, 224, 111975.
https://doi.org/10.1016/j.dyepig.2024.111975

[35]. Bull, O. S. Silicon-Containing COFs and MOFs for CO2 Capture. Ph.D. Thesis, Imperial College London 2018.

[36]. Ferguson, G.; Lawrence, S. E.; Neville, L. A.; O'Leary, B. J.; Spalding, T. R. Synthetic and X-ray diffraction studies of borosiloxane cages [R′Si(ORBO)3SiR′] and the adducts of [ButSi{O(PhB)O}3SiBut] with pyridine or N,N,N′,N′-tetramethylethylenediamine. Polyhedron 2007, 26 (12), 2482-2492.
https://doi.org/10.1016/j.poly.2006.12.045

[37]. O'Dowd, A. T.; Spalding, T. R.; Ferguson, G.; Gallagher, J. F.; Reed, D. Synthesis and crystal structure of the novel borosilicate cage compound [B(OSiPh2OSiPh2O)3B]. J. Chem. Soc., Chem. Commun. 1993, 1816.
https://doi.org/10.1039/c39930001816

[38]. Ferguson, G.; Lough, A. J.; Sheehan, J. P.; Spalding, T. R. Structure of 2-(diphenylmethylsiloxy)-2-phenyl-1,3,2-oxazaborinane. Acta. Crystallogr. C. Cryst. Struct. Commun. 1991, 47 (2), 379-381.
https://doi.org/10.1107/S0108270190005753

[39]. Brisdon, B. J.; Mahon, M. F.; Molloy, K. C.; Schofield, P. J. Synthesis and Structural Characterization of Cycloborasiloxanes: The X-Ray Crystal Structures of Cyclo-1,3,3,5,5-Pentaphenyl-1-Bora-3,5-Disiloxane and Cyclo-1,3,3,5,7,7-Hexaphenyl-1,5-Dibora-3,7-Disiloxane. J. Organomet. Chem. 1992, 436 (1), 11-22.
https://doi.org/10.1016/0022-328X(92)85022-O

[40]. Foucher, D. A.; Lough, A. J.; Manners, I. Synthesis, properties, and the ring-ring transformation reactions of cyclic siloxanes incorporating skeletal boron atoms: x-ray crystal structures of the strained boracyclotrisiloxane (PhBO)(Ph2SiO)2 and the boracyclotetrasiloxane (PhBO)(Ph2SiO)3. Inorg. Chem. 1992, 31 (14), 3034-3043.
https://doi.org/10.1021/ic00040a010

[41]. Wander, M.; Hausoul, P. J.; Sliedregt, L. A.; van Steen, B. J.; van Koten, G.; Klein Gebbink, R. J. Synthesis of Polyaryl Rigid-Core Carbosilane Dendrimers for Supported Organic Synthesis. Organometallics 2009, 28 (15), 4406-4415.
https://doi.org/10.1021/om900265v

[42]. Murali, A. C.; Panda, R.; Kannan, R.; Das, R.; Venkatasubbaiah, K. O,S-Chelated bis(pentafluorophenyl)boron and diphenylboron-β-thioketonates: synthesis, photophysical, electrochemical and NLO properties. Dalton. Trans. 2024, 53 (42), 17263-17271.
https://doi.org/10.1039/D4DT02471K

[43]. Purushothaman, P.; Mohanapriya, D.; Thenmozhi, K.; Karpagam, S. Designing a ferrocene biphenyl pyridine modified electrode for the non-enzymatic electrochemical detection of catechol. New. J. Chem. 2024, 48 (15), 6893-6901.
https://doi.org/10.1039/D4NJ00710G

Supporting Agencies

The Nigerian government through the Petroleum Technology Development Fund (PTDF) and the Tertiary Education Trust Fund (TETFUND); Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Private Mail Bag 5080, Nigeria.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).