European Journal of Chemistry 2020, 11(2), 139-144 | doi: | Get rights and content

Issue cover



Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective

Mohammad Suhail (1,*) orcid , Sofi Danish Mukhtar (2) orcid , Imran Ali (3) orcid , Ariba Ansari (4) orcid , Saiyam Arora (5) orcid

(1) Department of Chemistry, Jamia Millia Islamia (A Central University) Jamia Nagar, New Delhi-110025, India
(2) Department of Chemistry, Jamia Millia Islamia (A Central University) Jamia Nagar, New Delhi-110025, India
(3) Department of Chemistry, Jamia Millia Islamia (A Central University) Jamia Nagar, New Delhi-110025, India
(4) Department of Chemistry, Chaudhary Charan Singh University, Ramgarhi, Meerut, Uttar Pradesh-250001, India
(5) Department of Chemistry, National Institute of Technology, Jalandhar, Punjab-144011, India
(*) Corresponding Author

Received: 27 Feb 2020 | Revised: 24 Mar 2020 | Accepted: 28 Mar 2020 | Published: 30 Jun 2020 | Issue Date: June 2020


In regards to the Cannizzaro reaction and its peculiar mechanism, some researchers have presented a free radical mechanism for the Cannizzaro reaction, while others have found that it is feasible through an ionic mechanism, but the actual mechanism has not been finalized yet. The researchers have given the proof of both the mechanisms through their papers published. Actually, Cannizzaro reaction may occur through both mechanisms depending on both molecular structure and different conditions which are yet to be explained. Recently published papers describe that free radical mechanism occurs only in a heterogeneous medium, while an ionic mechanism occurs in a homogeneous medium. We revealed no explanation of the molecular structure-based reason, responsible for a radical or an ionic mechanism. The present paper reviews not only homogeneous/heterogeneous medium conditions but also molecular structure-based facts, which may be responsible for the Cannizzaro reaction to occur through the radical or ionic mechanism, and that may be acceptable to the scientific society. Besides, Density Functional Theory study using Gaussian software was also involved in the explanation of the molecular structure, responsible for one of the two mechanisms. Also, the present paper specifies all points related to future perspectives on which additional studies are required to understand the actual mechanism with a definite molecular structure in the different reaction media.


Ionic mechanism; Gaussian software; Molecular structure; Cannizzaro reaction; Free radical mechanism; Homogeneous/heterogeneous medium

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.11.2.139-144.1975

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 756 times | icon graph PDF Article downloaded 238 times



[1]. Mohd. Suhail
A Computational and Literature-Based Evaluation for a Combination of Chiral Anti-CoV Drugs to Block and Eliminate SARS-CoV-2 Safely
Journal of Computational Biophysics and Chemistry  20(04), 417, 2021
DOI: 10.1142/S2737416521500228

[2]. Sebastián Parra-Melipán, Vicente López, Sergio A. Moya, Gonzalo Valdebenito, Braulio Aranda, Pedro Aguirre
Valorization of furfural using ruthenium (II) complexes containing phosphorus-nitrogen ligands under homogeneous transfer hydrogen condition
Molecular Catalysis  513, 111729, 2021
DOI: 10.1016/j.mcat.2021.111729

[3]. Mohd. Suhail
The Target Determination and the Mechanism of Action of Chiral-Antimalarial Drugs: A Docking Approach
Journal of Computational Biophysics and Chemistry  20(05), 501, 2021
DOI: 10.1142/S2737416521500290


[1]. Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe J. J. Org. Chem. 1980, 45(6), 1066-1081.

[2]. Swain, C. G.; Powell, A. L.; Sheppard, W. A.; Morgan, C. R. J. Am. Chem. Soc. 1979, 101(13), 3576-3583.

[3]. Sharifi, A.; Mojtahedi M. M.; Saidi, M. R. Tetrahedron Lett. 1999, 40(6), 1179-1180.

[4]. Entezari, M. H.; Shameli, A. A. Ultrason. Sonochem. 2000, 7(4), 169-172.

[5]. Vida, Y.; Perez-Inestrosa E.; Suau, R. Tetrahedron Lett. 2005, 46(9), 1575-1577.

[6]. Reddy, B. V. S.; Srinivas, R.; Yadav J. S.; Ramalingam, T. Synth. Commun. 2002, 32(2), 219-223.

[7]. Yoshizawa, K.; Toyota S.; Toda, F. Tetrahedron Lett. 2001, 42(45), 7983-7985.

[8]. Sheldon, J. C.; Bowie, J. H.; Dua, S.; Smith, J. D.; O'Hair, R. A. J. J. J. Org. Chem. 1997, 62(12), 3931-3937.

[9]. Kagan, J. Tetrahedron Lett. 1966, 7(49), 6097-6102.

[10]. Curini, M.; Epifano, F.; Genovese, S.; Marcotullio, M. C.; Rosati, O. Org. Lett. 2005, 7(7), 1331-1333.

[11]. Desappan, V.; Viswanathan, J. Eur. J. Chem. 2018, 9(2), 126‐137.

[12]. Elsoud, F. A. A.; Abd-Elmonem, M.; Elsebaa, M. A.; Usef Sadek, K. Eur. J. Chem. 2019, 10(2), 166-170.

[13]. Al-Fulaij, O. A.; Elassar, A. A.; Dawood, K. M. Eur. J. Chem. 2019, 10(4), 367-375.

[14]. Assemian, A. S.; Kouassi, K. E.; Adouby, K.; Drogui, P.; Boa, D. Eur. J. Chem. 2018, 9(4), 311-316.

[15]. Nasiruddin, M.; Alam, J.; Naher, S. R. Eur. J. Chem. 2018, 9(3), 202-212.

[16]. Ashby, E. C.; Coleman D.; Gamasa, M. J. Org. Chem. 1987, 52(18), 4079-4085.

[17]. Geissman, T. A. Org. React. 1944, 2, 94-113.

[18]. Weiss, J. Trans. Faraday Soc. 1941, 37, 782-791.

[19]. Alexander, E. R. J. Am. Chem. Soc. 1947, 69(2), 289-294.

[20]. Lachman, A. J. Am. Chem. Soc. 1923, 45(10), 2356-2363.

[21]. Claisen, L. Berichte der Dtsch. Chem. Gesellschaft, 1887, 20(1), 646-650.

[22]. Meerwein, H.; Schmidt, R. Justus Liebig's Ann. der Chemie 1925, 444(1), 221-238.

[23]. Regitz, M.; Heydt, H.; Schank, K.; Franke, W. Chem. Beric. 1980, 113(3), 29-58.

[24]. Eitel, A.; Lock, G. Monatshefte für. Chemie. /Chem. Month. 1939, 72(1), 392-409.

[25]. Ashby, E. E.; Coleman D. T.; Gamasa, M. P. Tetrahedron Lett. 1983, 24(9), 851-854.

[26]. Ashby, E. C. Acc. Chem. Res. 1988, 21(11), 414-421.

[27]. Rehbein, J.; Ruser, S. M.; Phan, J. Chem. Sci. 2015, 6(10), 6013-6018.

[28]. Chung, S. K. J. Chem. Soc. Chem. Commun. 1982, 5(9), 480-481.

[29]. Haber, F.; Willstatter, R. Berichte der Dtsch. Chem. Gesellschaft (AB Ser) 1931, 64(11), 2844-2856.

[30]. Rieger, P. H.; Fraenkel, G. K. J. Chem. Phys. 1963, 39(3), 609-629.

[31]. Kharasch, M. S.; Foy, M. J. Am. Chem. Soc. 1935, 57(8), 1510-1510.

[32]. Alajmi, M.; Hussain, A.; Suhail, M. Chirality. 2016, 28(9), 642-648.

[33]. Ali, I.; Lone, M.; Suhail, M. RSC. Adv. 2016, 6(17), 14372-14380.

[34]. Ali, I.; Suhail, M.; Asnin, l. Chirality. 2018, 30(12), 1304-1311.

[35]. Ali, I.; Suhail, M.; Alothman, Z.; Badjah, A. Y. Sep. Pur. Tech. 2018, 197, 336-344.

[36]. Ali, I.; Suhail, M.; Alothman, Z.; Amal, M. A.; Alwarthan, A. Sep. Pur. Tech. 2020, 236, 116256.

[37]. Ali, I.; Suhail, M.; Alothman, Z.; Alwarthan, A. Chirality. 2017, 29(7), 386-397.

[38]. Somagond, S. M.; Manjunath, N. W.; Shaikh, S. K. J.; Inamdar, S. R.; Shankar, M. K.; Prasad, D. J.; Kamble, R. R. Eur. J. Chem. 2019, 10(4), 281-294.

[39]. Shanshal, M. A.; Yusuf Q. A. Eur. J. Chem. 2019, 10(4), 403-408.

[40]. Darugar, V.; Vakili, M.; Tayyari, S. F.; Kamounah, F. S.; Afzali, R. Eur. J. Chem. 2018, 9(3), 213-221.

[41]. Al-Salami, B. K. Eur. J. Chem. 2018, 9(2), 74-78.

[42]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[43]. Becke, A. D. J. Chem. Phys. 1993, 98(7), 5648-5652.

[44]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37(2), 785-789.

[45]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[46]. Kadesch, R. G.; Weller, S. W. J. Am. Chem. Soc. 1941, 63, 1310-1314.

[47]. Bohm, S.; Exner, O. Chem-Eur. J. 2000, 6(18), 3391-3398.<3391::AID-CHEM3391>3.0.CO;2-X

[48]. Kulhanek, J.; Bohm, S.; Palat, K.; Exner, O. J. Phys. Org. Chem. 2004, 17, 686-693.

[49]. Bohm, S.; Exner, O. New J. Chem. 2001, 25, 250-254.

[50]. Saeed, M. A.; Roholah, S.; Mohammad, M. M. Org. Lett. 2005, 7(26), 5893-5895.

How to cite

Suhail, M.; Mukhtar, S.; Ali, I.; Ansari, A.; Arora, S. Eur. J. Chem. 2020, 11(2), 139-144. doi:10.5155/eurjchem.11.2.139-144.1975
Suhail, M.; Mukhtar, S.; Ali, I.; Ansari, A.; Arora, S. Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective. Eur. J. Chem. 2020, 11(2), 139-144. doi:10.5155/eurjchem.11.2.139-144.1975
Suhail, M., Mukhtar, S., Ali, I., Ansari, A., & Arora, S. (2020). Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective. European Journal of Chemistry, 11(2), 139-144. doi:10.5155/eurjchem.11.2.139-144.1975
Suhail, Mohammad, Sofi Danish Mukhtar, Imran Ali, Ariba Ansari, & Saiyam Arora. "Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective." European Journal of Chemistry [Online], 11.2 (2020): 139-144. Web. 19 Oct. 2021
Suhail, Mohammad, Mukhtar, Sofi, Ali, Imran, Ansari, Ariba, AND Arora, Saiyam. "Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective" European Journal of Chemistry [Online], Volume 11 Number 2 (30 June 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2020, 11(2), 139-144 | doi: | Get rights and content


Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.