European Journal of Chemistry

Chiral metallic anticancer drugs: A brief-review

Crossmark


Main Article Content

Sofi Danish Mukhtar
Mohammad Suhail

Abstract

Chiral metallic drugs are becoming the hottest point of discussion in the field of medicinal chemistry. As we know that more than 80% drugs are chiral in nature, and prescribed in the racemic form. The main problem with chiral drugs is the different biological activities of different enantiomers. This is because the human body has a chiral environment, as there is the presence of protein, carbohydrates, enzymes, and other chiral macromolecules. Hence, if a chiral anticancer drug is being prescribed to the patient in the racemic form, it means two or more drugs are being prescribed. Therefore, the chiral separation and analysis of chiral anticancer drugs are important for improving the quality of chiral drug medication. Many metal complexes are used as anticancer drugs, but the conditions become more critical if they have chirality or a chiral moiety, because of which they exist in two or more forms. Because of the presence of chirality or chiral moiety, the complex of metals is termed a chiral metallic complex. Of course, the enantioseparation of the chiral metallic complexes must be done before their prescription. Enantioseparation of the chiral metallic complex will not only provide a pharmaceutically active form to the patient but also reduce the side effects caused by the racemic mixture. Hence, the accessible article reviews the chiral metallic complexes having ruthenium, osmium, palladium, gold, silver, and platinum, etc. as central metal atoms. Besides, the future perspectives regarding the chiral metallic anticancer drugs and the role of their enantioseparation are also discussed.


icon graph This Abstract was viewed 611 times | icon graph Article PDF downloaded 268 times

How to Cite
(1)
Mukhtar, S. D.; Suhail, M. Chiral Metallic Anticancer Drugs: A Brief-Review. Eur. J. Chem. 2022, 13, 483-490.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ali, I.; Lone, M. N.; Aboul-Enein, H. Y. Imidazoles as potential anticancer agents. Med. Chem.Comm. 2017, 8, 1742-1773.
https://doi.org/10.1039/C7MD00067G

[2]. Ali, I.; Nadeem Lone, M.; Suhail, M.; Danish Mukhtar, S.; Asnin, L. Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem. 2016, 23, 2159-2187.
https://doi.org/10.2174/0929867323666160405111152

[3]. Ali, I.; Suhail, M.; Naqshbandi, M. F.; Fazil, M.; Ahmad, B.; Sayeed, A. Role of Unani medicines in cancer control and management. Curr. Drug ther. 2019, 14, 92-113.
https://doi.org/10.2174/1574885513666180907103659

[4]. Suhail, M. In vitro anticancer, antioxidant and DNA-binding study of the bioactive ingredient of clove and its isolation. Eur. J. Chem. 2022, 13, 33-40.
https://doi.org/10.5155/eurjchem.13.1.33-40.2158

[5]. Ali, I.; Suhail, M.; Fazil, M.; Ahmad, B.; Sayeed, A.; Naqshbandi, M. F.; Azam, A. Anti-cancer and Anti-oxidant Potencies of Cuscuta reflexa Roxb. Plant Extracts. Am. J. Adv. Drug Deliv. 2019, 14, 92-113.
https://doi.org/10.2174/1574885513666180907103659

[6]. Suhail, M.; Ali, I. An advanced computational evaluation for the most biologically active enantiomers of chiral anti-cancer agents. Anticancer Agents Med. Chem. 2021, 21, 2075-2081.
https://doi.org/10.2174/1871520621999201230233811

[7]. ALOthman, Z. A.; ALanazi, A. G.; Suhail, M.; Ali, I. HPLC enantio-separation and chiral recognition mechanism of quinolones on vancomycin CSP. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1157, 122335.
https://doi.org/10.1016/j.jchromb.2020.122335

[8]. Ali, I.; Suhail, M.; Alothman, Z. A.; Alwarthan, A. Chiral separation and modeling of baclofen, bupropion, and etodolac profens on amylose reversed phase chiral column. Chirality 2017, 29, 386-397.
https://doi.org/10.1002/chir.22717

[9]. Chiral Intermediates; Challener, C. A., Ed.; Ashgate Publishing: London, England, 2001.

[10]. Drug stereochemistry: Analytical methods and pharmacology, Third edition; Jozwiak, K.; Lough, W. J.; Wainer, I. W., Eds.; CRC Press, 2012.

[11]. Suhail, M.; Ali, I. Gas chromatography: A tool for drug analysis in biological samples. Chemistry International 2020, 6, 277-294.

[12]. Rentsch, K. M. The importance of stereoselective determination of drugs in the clinical laboratory. J. Biochem. Biophys. Methods 2002, 54, 1-9.
https://doi.org/10.1016/S0165-022X(02)00124-0

[13]. Walther, W.; Netscher, T. Design and development of chiral reagents for the chromatographic e.e. determination of chiral alcohols. Chirality 1996, 8, 397-401.
https://doi.org/10.1002/(SICI)1520-636X(1996)8:5<397::AID-CHIR7>3.0.CO;2-B

[14]. Suhail, M. A computational and literature-based evaluation for a combination of chiral anti-CoV drugs to block and eliminate SARS-CoV-2 safely. J. Comput. Biophys. Chem. 2021, 20, 417-432.
https://doi.org/10.1142/S2737416521500228

[15]. Suhail, M. The target determination and the mechanism of action of chiral-antimalarial drugs: A docking approach. J. Comput. Biophys. Chem. 2021, 20, 501-516.
https://doi.org/10.1142/S2737416521500290

[16]. Ali, I.; Suhail, M.; Aboul-Enein, H. Y. Advances in chiral multi dimensional liquid chromatography. Trends Analyt. Chem. 2019, 120, 115634.
https://doi.org/10.1016/j.trac.2019.115634

[17]. Ali, I.; Suhail, M.; Aboul-Enein, H. Y. Chiral analysis of macromolecules. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 749-760.
https://doi.org/10.1080/10826076.2018.1514509

[18]. Ali, I.; Suhail, M.; Asnin, L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018, 30, 1304-1311.
https://doi.org/10.1002/chir.23024

[19]. Ali, I.; Suhail, M.; Alharbi, O. M. L.; Hussain, I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 137-160.
https://doi.org/10.1080/10826076.2019.1579739

[20]. Ali, I.; Suhail, M.; Lone, M. N.; Alothman, Z. A.; Alwarthan, A. Chiral resolution of multichiral center racemates by different modalities of chromatography. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 435-444.
https://doi.org/10.1080/10826076.2016.1152582

[21]. Ali, I.; Suhail, M.; ALOthman, Z. A.; Al-Mohaimeed, A. M.; Alwarthan, A. Chiral resolution of four stereomers and simulation studies of newly synthesized antibacterial agents having two chiral centers. Sep. Purif. Technol. 2020, 236, 116256.
https://doi.org/10.1016/j.seppur.2019.116256

[22]. Ali, I.; Suhail, M.; Asnin, L. Chiral separation of quinolones by liquid chromatography and capillary electrophoresis. J. Sep. Sci. 2017, 40, 2863-2882.
https://doi.org/10.1002/jssc.201700200

[23]. Ali, I.; Suhail, M.; Alothman, Z. A.; Badjah, A. Y. Stereoselective interactions of profen stereomers with human plasma proteins using nano solid phase micro membrane tip extraction and chiral liquid chromatography. Sep. Purif. Technol. 2018, 197, 336-344.
https://doi.org/10.1016/j.seppur.2018.01.029

[24]. Ali, I.; Lone, M. N.; Suhail, M.; AL-Othman, Z. A.; Alwarthan, A. Enantiomeric resolution and simulation studies of four enantiomers of 5-bromo-3-ethyl-3-(4-nitrophenyl)-piperidine-2,6-dione on a Chiralpak IA column. RSC Adv. 2016, 6, 14372-14380.
https://doi.org/10.1039/C5RA26462F

[25]. Ali, I.; Suhail, M.; Sanagi, M. M.; Aboul-Enein, H. Y. Ionic liquids in HPLC and CE: A hope for future. Crit. Rev. Anal. Chem. 2017, 47, 332-339.
https://doi.org/10.1080/10408347.2017.1294047

[26]. Ali, I.; Suhail, M.; Asnin, L.; Aboul-Enein, H. Y. Effect of various parameters and mechanism of reversal order of elution in chiral HPLC. Curr. Anal. Chem. 2020, 16, 59-78.
https://doi.org/10.2174/1573411015666190103145916

[27]. Borman, S. Asymmetric Catalysis Wins: Chemistry Nobel honors Knowles, Noyori, Sharpless for chiral syntheses. Chem. Eng. News Archive 2001, 79, 5-6.
https://doi.org/10.1021/cen-v079n042.p005

[28]. Liu, J.-T.; Liu, R. H. Enantiomeric composition of abused amine drugs: chromatographic methods of analysis and data interpretation. J. Biochem. Biophys. Methods 2002, 54, 115-146.
https://doi.org/10.1016/S0165-022X(02)00136-7

[29]. Peepliwal, A. K.; Bagade, S. B.; Bonde, C. G. A Review: Stereochemical consideration and eudismic ratio in chiral drug development. J. Biomed. Sci. 2010, 2, 29-45.

[30]. Gonawan, F. N. Kinetics and modelling for the production of (S)-Ibuprofen acid, Universiti Sains Malaysia: http://eprints.usm.my/id/ eprint/44801 (accessed August 14, 2022).

[31]. Shing, T. K. M.; Wu, H. T.; Kwok, H. F.; Lau, C. B. S. Synthesis of chiral hydroxylated enones as potential anti-tumor agents. Bioorg. Med. Chem. Lett. 2012, 22, 7562-7565.
https://doi.org/10.1016/j.bmcl.2012.10.026

[32]. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The next generation of platinum drugs: Targeted pt(II) agents, nanoparticle delivery, and pt(IV) prodrugs. Chem. Rev. 2016, 116, 3436-3486.
https://doi.org/10.1021/acs.chemrev.5b00597

[33]. Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T. An asymmetric synthesis of 1,2,4-trioxane anticancer agents via desymmetrization of peroxyquinols through a Brønsted acid catalysis cascade. J. Am. Chem. Soc. 2012, 134, 13554-13557.
https://doi.org/10.1021/ja3052427

[34]. Ananthi, N. Role of chirality in drugs. Org. Med. Chem. Int. J. 2018, 5, 555661.
https://doi.org/10.19080/OMCIJ.2018.05.555661

[35]. Aliprandi, A.; Croisetu, C. M.; Mauro, M.; Cola, L. D. Chiral amplification by self-assembly of neutral luminescent platinum(II) complexes. Chemistry 2017, 23, 5957-5961.
https://doi.org/10.1002/chem.201605103

[36]. Sun, W.; Li, S.; Häupler, B.; Liu, J.; Jin, S.; Steffen, W.; Schubert, U. S.; Butt, H.-J.; Liang, X.-J.; Wu, S. An amphiphilic ruthenium poly metallodrug for combined photodynamic therapy and photo chemotherapy in vivo. Adv. Mater. 2017, 29, 1603702.
https://doi.org/10.1002/adma.201603702

[37]. Dwyer, F. P.; Gyarfas, E. C.; Rogers, W. P.; Koch, J. H. Biological activity of complex ions. Nature 1952, 170, 190-191.
https://doi.org/10.1038/170190a0

[38]. Kilah, N. L.; Meggers, E. Sixty years young: The diverse biological activities of metal polypyridyl complexes pioneered by Francis P. dwyer. Aust. J. Chem. 2012, 65, 1325.
https://doi.org/10.1071/CH12275

[39]. Ma, D.-L.; Wang, M.; Liu, C.; Miao, X.; Kang, T.-S.; Leung, C.-H. Metal complexes for the detection of disease-related protein biomarkers. Coord. Chem. Rev. 2016, 324, 90-105.
https://doi.org/10.1016/j.ccr.2016.07.010

[40]. Arnesano, F.; Pannunzio, A.; Coluccia, M.; Natile, G. Effect of chirality in platinum drugs. Coord. Chem. Rev. 2015, 284, 286-297.
https://doi.org/10.1016/j.ccr.2014.07.016

[41]. Wang, Y.; Huang, H.; Zhang, Q.; Zhang, P. Chirality in metal-based anticancer agents. Dalton Trans. 2018, 47, 4017-4026.
https://doi.org/10.1039/C8DT00089A

[42]. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573-584.
https://doi.org/10.1038/nrc2167

[43]. Hamilton, G.; Olszewski, U. Picoplatin pharmacokinetics and chemo therapy of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1381-1390.
https://doi.org/10.1517/17425255.2013.815724

[44]. Montana, A.; Batalla, C. The rational design of anticancer platinum complexes: The importance of the structure-activity relationship. Curr. Med. Chem. 2009, 16, 2235-2260.
https://doi.org/10.2174/092986709788453087

[45]. Arnesano, F.; Boccarelli, A.; Cornacchia, D.; Nushi, F.; Sasanelli, R.; Coluccia, M.; Natile, G. Mechanistic insight into the inhibition of matrix metalloproteinases by platinum substrates. J. Med. Chem. 2009, 52, 7847-7855.
https://doi.org/10.1021/jm900845t

[46]. Coluccia, M.; Natile, G. Trans-platinum complexes in cancer therapy. Anticancer Agents Med. Chem. 2007, 7, 111-123.
https://doi.org/10.2174/187152007779314080

[47]. Shabana, A. A.; Butler, I. S.; Castonguay, A.; Mostafa, M.; Jean-Claude, B. J.; Mostafa, S. I. DNA interaction and anticancer evaluation of new palladium(II), platinum(II) and silver(I) complexes based on (Δ)- and (Λ)-1,2-bis-(1H-benzimidazol-2-yl)-1,2-ethanediol enantiomers. Polyhedron 2018, 154, 156-172.
https://doi.org/10.1016/j.poly.2018.07.020

[48]. Gade, L. H.; Bellemin-Laponnaz, S. Chiral N-Heterocyclic Carbenes as Stereodirecting Ligands in Asymmetric Catalysis. In N-Heterocyclic Carbenes in Transition Metal Catalysis; Springer Berlin Heidelberg, 2006; pp. 117-157.
https://doi.org/10.1007/978-3-540-36930-1_5

[49]. Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 2010, 39, 1903.
https://doi.org/10.1039/b902238b

[50]. Mullick, A. B.; Chang, Y. M.; Ghiviriga, I.; Abboud, K. A.; Tan, W.; Veige, A. S. Human cancerous and healthy cell cytotoxicity studies of a chiral μ-dicarbene-digold(i) metallamacrocycle. Dalton Trans. 2013, 42, 7440.
https://doi.org/10.1039/c3dt32844a

[51]. Li, B.-B.; Jia, Y.-X.; Zhu, P.-C.; Chew, R. J.; Li, Y.; Tan, N. S.; Leung, P.-H. Highly selective anti-cancer properties of ester functionalized enantiopure dinuclear gold(I)-diphosphine. Eur. J. Med. Chem. 2015, 98, 250-255.
https://doi.org/10.1016/j.ejmech.2015.05.027

[52]. Trondl, R.; Heffeter, P.; Kowol, C. R.; Jakupec, M. A.; Berger, W.; Keppler, B. K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014, 5, 2925-2932.
https://doi.org/10.1039/C3SC53243G

[53]. Meier-Menches, S. M.; Gerner, C.; Berger, W.; Hartinger, C. G.; Keppler, B. K. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem. Soc. Rev. 2018, 47, 909-928.
https://doi.org/10.1039/C7CS00332C

[54]. Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 2011, 54, 3-25.
https://doi.org/10.1021/jm100020w

[55]. Blanck, S.; Maksimoska, J.; Baumeister, J.; Harms, K.; Marmorstein, R.; Meggers, E. The art of filling protein pockets efficiently with octahedral metal complexes. Angew. Chem. Int. Ed Engl. 2012, 51, 5244-5246.
https://doi.org/10.1002/anie.201108865

[56]. Atilla-Gokcumen, G. E.; Williams, D. S.; Bregman, H.; Pagano, N.; Meggers, E. Organometallic compounds with biological activity: A very selective and highly potent cellular inhibitor for glycogen synthase kinase 3. Chembiochem 2006, 7, 1443-1450.
https://doi.org/10.1002/cbic.200600117

[57]. Smalley, K. S. M.; Contractor, R.; Haass, N. K.; Kulp, A. N.; Atilla-Gokcumen, G. E.; Williams, D. S.; Bregman, H.; Flaherty, K. T.; Soengas, M. S.; Meggers, E.; Herlyn, M. An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res. 2007, 67, 209-217.
https://doi.org/10.1158/0008-5472.CAN-06-1538

[58]. Taghizadeh Shool, M.; Amiri Rudbari, H.; Gil-Antón, T.; Cuevas-Vicario, J. V.; García, B.; Busto, N.; Moini, N.; Blacque, O. The effect of halogennation of salicylaldehyde on the antiproliferative activities of Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4 complexes. Dalton Trans. 2022, 51, 7658-7672.
https://doi.org/10.1039/D2DT00401A

[59]. Zhang, P.; Wang, Y.; Qiu, K.; Zhao, Z.; Hu, R.; He, C.; Zhang, Q.; Chao, H. A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chem. Commun. (Camb.) 2017, 53, 12341-12344.
https://doi.org/10.1039/C7CC07776A

[60]. Fu, Y.; Soni, R.; Romero, M. J.; Pizarro, A. M.; Salassa, L.; Clarkson, G. J.; Hearn, J. M.; Habtemariam, A.; Wills, M.; Sadler, P. J. Mirror-image organometallic osmium Arene iminopyridine halido complexes exhibit similar potent anticancer activity. Chemistry 2013, 19, 15199-15209.
https://doi.org/10.1002/chem.201302183

[61]. Vargováa, Z.; Rendošováa, M.; Kuzderováa, G.; Sabolováa, D.; Vilkováa, M.; Gyepesb, R.; Olejníkovác, P.; Kellod, M.; Mudroňováe, D. Relationship between Structure and Biological Properties of Silver (I) Complexes; Pavol Jozef Šafárik Univ. Košice Fac. Sci. ISBN: 978-80-574-0048-6, 2021.

[62]. Pytkowicz, J.; Roland, S.; Mangeney, P. Synthesis of chiral silver(I) diaminocarbene complexes from (R,R)-4,5-di-tert-butylimidazoline. J. Organomet. Chem. 2001, 631, 157-163.
https://doi.org/10.1016/S0022-328X(01)01013-0

[63]. Scattolin, T.; Voloshkin, V. A.; Visentin, F.; Nolan, S. P. A critical review of palladium organometallic anticancer agents. Cell Reports Physical Science 2021, 2, 100446.
https://doi.org/10.1016/j.xcrp.2021.100446

[64]. Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. Medchemcomm 2011, 2, 349-355.
https://doi.org/10.1039/C1MD00017A

[65]. Agranat, I.; Caner, H. Intellectual property and chirality of drugs. Drug Discov. Today 1999, 4, 313-321.
https://doi.org/10.1016/S1359-6446(99)01363-X

[66]. Agranat, I.; Caner, H.; Caldwell, J. Putting chirality to work: the strategy of chiral switches. Nat. Rev. Drug Discov. 2002, 1, 753-768.
https://doi.org/10.1038/nrd915

[67]. Wermuth, C. G.; Ganellin, C. R.; Lindberg, P.; Mitscher, L. A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. 1998, 70, 1129-1143.
https://doi.org/10.1351/pac199870051129

[68]. Branch, S. K.; Agranat, I. "new drug" designations for new therapeutic entities: New active substance, new chemical entity, new biological entity, new molecular entity. J. Med. Chem. 2014, 57, 8729-8765.
https://doi.org/10.1021/jm402001w

[69]. Gellad, W. F.; Choi, P.; Mizah, M.; Good, C. B.; Kesselheim, A. S. Assessing the chiral switch: approval and use of single-enantiomer drugs, 2001 to 2011. Am. J. Manag. Care 2014, 20, e90-7.

[70]. Calcaterra, A.; D'Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323-340.
https://doi.org/10.1016/j.jpba.2017.07.008

[71]. Leek, H.; Andersson, S. Preparative scale resolution of enantiomers enables accelerated drug discovery and development. Molecules 2017, 22, 158.
https://doi.org/10.3390/molecules22010158

[72]. Hsu, L. C.; Kim, H.; Yang, X.; Ross, D. Large scale chiral chromatography for the separation of an enantiomer to accelerate drug development. Chirality 2011, 23, 361-366.
https://doi.org/10.1002/chir.20931

[73]. Challener, C. A. Recent Chiral Advances Demonstrate Promise for API Synthesis. Pharm. Technol. 2016, 40, 28-29.

[74]. Landoni, M. F.; Soraci, A. Pharmacology of chiral compounds: 2-arylpropionic acid derivatives. Curr. Drug Metab. 2001, 2, 37-51.
https://doi.org/10.2174/1389200013338810

[75]. Davies, N. M.; Teng, X. W.; Pharm, B. Importance of chirality in drug therapy and pharmacy practice: Implications for psychiatry. Advances in Pharmacy 2003, 1, 242-252.

[76]. Waldeck, B. Three-dimensional pharmacology, a subject ranging from ignorance to overstatements. Pharmacol. Toxicol. 2003, 93, 203-210.
https://doi.org/10.1046/j.1600-0773.2003.pto930502.x

[77]. Cox, P. J.; Farmer, P. B.; Foster, A. B.; Gilby, E. D.; Jarman, M. The use of deuterated analogs in qualitative and quantitative investigations of the metabolism of cyclophosphamide (NSC-26271). Cancer Treat. Rep. 1976, 60, 483-491.

[78]. Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M. Chiral drug analysis in forensic chemistry: An overview. Molecules 2018, 23, 262.
https://doi.org/10.3390/molecules23020262

[79]. Rautio, J.; Meanwell, N. A.; Di, L.; Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018, 17, 559-587.
https://doi.org/10.1038/nrd.2018.46

[80]. Lai, J.-C.; Cheng, W.-F.; Liu, C.-K.; Cheng, K.-T. Optically switchable bistable guest-host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals. Dyes Pigm. 2019, 163, 641-646.
https://doi.org/10.1016/j.dyepig.2018.12.030

[81]. Hussain, R.; Longo, E.; Siligardi, G. UV-denaturation assay to assess protein photostability and ligand-binding interactions using the high photon flux of Diamond B23 beamline for SRCD. Molecules 2018, 23, 1906.
https://doi.org/10.3390/molecules23081906

[82]. Ali, I.; Suhail, M.; Locatelli, M.; Ali, S.; Y. Aboul-Enein, H. Role of ionic liquids in capillary electrophoresis. Analytica 2022, 3, 236-250.
https://doi.org/10.3390/analytica3020017

[83]. Mehvar, R.; Brocks, D. R.; Vakily, M. Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin. Pharmacokinet. 2002, 41, 533-558.
https://doi.org/10.2165/00003088-200241080-00001

[84]. Rengasamy, V.; Suhail, M.; Jain, A. Green synthesis of uracil derivatives, DNA binding study and docking-based evaluation of their anti-cancer and anti-viral potencies. Act Scie Pharma 2022, 116-133.
https://doi.org/10.31080/ASPS.2022.06.0842

[85]. ALOthman, Z. A.; Badjah, A. Y.; Alsheetan, K. M.; Suhail, M.; Ali, I. Enantiomeric resolution of quinolones on crown ether CSP: Thermodynamics, chiral discrimination mechanism and application in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1166, 122550.
https://doi.org/10.1016/j.jchromb.2021.122550

[86]. Ali, I.; Suhail, M.; Alothman, Z. A.; Abdulrahman, A.; Aboul-Enein, H. Y. Drug analyses in human plasma by chromatography. In Handbook of Analytical Separations; Elsevier, 2020; pp. 15-46.
https://doi.org/10.1016/B978-0-444-64066-6.00002-2

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).