European Journal of Chemistry

Theoretical DFT study of stereoselective hydrolysis of enantiomers of naproxen

Crossmark


Main Article Content

Mohammad Suhail

Abstract

Ester hydrolysis is a common and important reaction in organic chemistry. It is catalyzed by acid or base. This phenomenon becomes very interesting when it attains enantioselectivity. Its most common example is the enantioselective hydrolysis of the S-naproxen ester. When the hydrolysis of R/S-naproxen ester is performed, only the S-naproxen ester takes part in the hydrolysis, but the R-naproxen ester does not. Because of this, the hydrolysis of R/S naproxen ester is used to gain pharmaceutically and biologically active S-naproxen. The data in the literature describe why the hydrolysis of only the S-naproxen ester is possible, while that of the R-naproxen ester is not. Furthermore, another notable question is the acid-catalyzed nature alone, while simple ester hydrolysis is an acid-base-catalyzed phenomenon. The theoretical DFT study answers these complicated questions. In the presented article, different parameters of the ester group (-COO-) constituents of the simple ester as well as the R/S naproxen ester in water were theoretically studied. These parameters were the same between the S-naproxen ester and the simple ester after DFT calculation in water. On the other hand, the R-naproxen ester did not show similarities to that of simple ester in water.


icon graph This Abstract was viewed 174 times | icon graph Article PDF downloaded 54 times

How to Cite
(1)
Suhail, M. Theoretical DFT Study of Stereoselective Hydrolysis of Enantiomers of Naproxen. Eur. J. Chem. 2025, 16, 46-52.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Yates, K.; McClelland, R. A. Mechanisms of ester hydrolysis in aqueous sulfuric acids. J. Am. Chem. Soc. 1967, 89 (11), 2686-2692.
https://doi.org/10.1021/ja00987a033

[2]. Cordes, E. H.; Bull, H. G. Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters. Chem. Rev. 1974, 74 (5), 581-603.
https://doi.org/10.1021/cr60291a004

[3]. Stefanidis, D.; Jencks, W. P. General base catalysis of ester hydrolysis. J. Am. Chem. Soc. 1993, 115 (14), 6045-6050.
https://doi.org/10.1021/ja00067a020

[4]. Roura Padrosa, D.; De Vitis, V.; Contente, M. L.; Molinari, F.; Paradisi, F. Overcoming Water Insolubility in Flow: Enantioselective Hydrolysis of Naproxen Ester. Catalysts 2019, 9 (3), 232.
https://doi.org/10.3390/catal9030232

[5]. Tsai, S.; Tsai, C.; Chang, C. Lipase-Catalyzed Synthesis of (S)-Naproxen Ester Prodrug by Transesterification in Organic Solvents. Appl. Biochem. Biotechnol. 1999, 80 (3), 205-220.
https://doi.org/10.1385/ABAB:80:3:205

[6]. Tsai, S.; Wei, H. Enantioselective esterification of racemic naproxen by lipases in organic solvent. Enzyme Microb. Technol. 1994, 16 (4), 328-333.
https://doi.org/10.1016/0141-0229(94)90175-9

[7]. Ascioglu, S.; Ozyilmaz, E.; Yildirim, A.; Sayin, S.; Yilmaz, M. Preparation of two new chiral metal-organic frameworks for lipase immobilization and their use as biocatalysis in the enantioselective hydrolysis of racemic naproxen methyl ester. Int. J. Biol. Macromol. 2024, 282, 136946.
https://doi.org/10.1016/j.ijbiomac.2024.136946

[8]. Ascioglu, S.; Ozyilmaz, E.; Yildirim, A.; Sayin, S.; Yilmaz, M. Fabrication of lipase-immobilized proline-conjugated zirconium-based metal-organic framework (UiO-66-NH2) to enhance catalytic activity, stability, and enantioselectivity. Biochem. Eng. J. 2024, 204, 109242.
https://doi.org/10.1016/j.bej.2024.109242

[9]. Giordano, C.; Castaldi, G.; Cavicchioli, S.; Villa, M. A stereoconvergent strategy for the synthesis of enantiomerically pure (R)-(−) and (S)-(+)-2-(6-methoxy-2-naphthyl)-propanoic acid (naproxen). Tetrahedron 1989, 45 (13), 4243-4252.
https://doi.org/10.1016/S0040-4020(01)81319-3

[10]. Chang, C.; Tsai, S. A facile enzymatic process for the preparation of (s)-Naproxen ester prodrug in organic solvents. Enzyme Microb. Technol. 1997, 20 (8), 635-639.
https://doi.org/10.1016/S0141-0229(96)00222-0

[11]. Brady, D.; Steenkamp, L.; Skein, E.; Chaplin, J. A.; Reddy, S. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme Microb. Technol. 2004, 34 (3-4), 283-291.
https://doi.org/10.1016/j.enzmictec.2003.11.002

[12]. Suhail, M.; Mukhtar, S. D.; Ali, I.; Ansari, A.; Arora, S. Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective. Eur. J. Chem. 2020, 11 (2), 139-144.
https://doi.org/10.5155/eurjchem.11.2.139-144.1975

[13]. Ali, I.; Suhail, M.; Asnin, L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018, 30 (12), 1304-1311.
https://doi.org/10.1002/chir.23024

[14]. Ali, I.; Suhail, M.; ALOthman, Z. A.; Al-Mohaimeed, A. M.; Alwarthan, A. Chiral resolution of four stereomers and simulation studies of newly synthesized antibacterial agents having two chiral centers. Sep. Purif. Technol. 2020, 236, 116256.
https://doi.org/10.1016/j.seppur.2019.116256

[15]. ALOthman, Z. A.; ALanazi, A. G.; Suhail, M.; Ali, I. HPLC enantio-separation and chiral recognition mechanism of quinolones on vancomycin CSP. J. Chromatogr. B 2020, 1157, 122335.
https://doi.org/10.1016/j.jchromb.2020.122335

[16]. ALOthman, Z. A.; Badjah, A. Y.; Alsheetan, K. M.; Suhail, M.; Ali, I. Enantiomeric resolution of quinolones on crown ether CSP: Thermodynamics, chiral discrimination mechanism and application in biological samples. J. Chromatogr. B 2021, 1166, 122550.
https://doi.org/10.1016/j.jchromb.2021.122550

[17]. Suhail, M. In vitro anticancer, antioxidant and DNA-binding study of the bioactive ingredient of clove and its isolation. Eur. J. Chem. 2022, 13 (1), 33-40.
https://doi.org/10.5155/eurjchem.13.1.33-40.2158

[18]. Suhail, M.; Ali, I. An Advanced Computational Evaluation for the Most Biologically Active Enantiomers of Chiral Anti-Cancer Agents. Anticancer. Agents Med. Chem. 2021, 21 (15), 2075-2081.
https://doi.org/10.2174/1871520621999201230233811

[19]. Suhail, M. A Computational and Literature-Based Evaluation for a Combination of Chiral Anti-CoV Drugs to Block and Eliminate SARS-CoV-2 Safely. J. Comput. Biophys. Chem. 2021, 20 (04), 417-432.
https://doi.org/10.1142/S2737416521500228

[20]. Suhail, M. The Target Determination and the Mechanism of Action of Chiral-Antimalarial Drugs: A Docking Approach. J. Comput. Biophys. Chem. 2021, 20 (05), 501-516.
https://doi.org/10.1142/S2737416521500290

[21]. Saji, R. S.; Prasana, J. C.; Muthu, S.; George, J.; Kuruvilla, T. K.; Raajaraman, B. Spectroscopic and quantum computational study on naproxen sodium. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2020, 226, 117614.
https://doi.org/10.1016/j.saa.2019.117614

[22]. Hussan Kodakkat Parambil, S.; Asharaf Thozhuvana Parambil, H.; Parammal Hamza, S.; Thirumangalath Parameswaran, A.; Shahin Thayyil, M.; Karuvanthodi, M. DFT and Molecular Docking Studies of a Set of Non-Steroidal Anti-Inflammatory Drugs: Propionic Acid Derivatives. Density Funct. Theory Calc. 2021.
https://doi.org/10.5772/intechopen.93828

[23]. Liu, L.; Gao, H. Quantum chemistry study of molecular structure and vibrational spectrum of naproxen. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2012, 86, 131-138.
https://doi.org/10.1016/j.saa.2011.10.018

[24]. Carignani, E.; Borsacchi, S.; Bradley, J. P.; Brown, S. P.; Geppi, M. Strong Intermolecular Ring Current Influence on 1H Chemical Shifts in Two Crystalline Forms of Naproxen: a Combined Solid-State NMR and DFT Study. J. Phys. Chem. C. 2013, 117 (34), 17731-17740.
https://doi.org/10.1021/jp4044946

[25]. Tu, N.; Liu, Y.; Li, R.; Lv, W.; Liu, G.; Ma, D. Experimental and theoretical investigation on photodegradation mechanisms of naproxen and its photoproducts. Chemosphere 2019, 227, 142-150.
https://doi.org/10.1016/j.chemosphere.2019.04.055

[26]. Moniruzzaman; Hoque, M. J.; Ahsan, A.; Hossain, M. B. Molecular Docking, Pharmacokinetic, and DFT Calculation of Naproxen and its Degradants. Biomed. J. Sci. Tech. Res. 2018, 9(5)-2018. BJSTR. MS.ID.001852.
https://doi.org/10.26717/BJSTR.2018.09.001852

[27]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian16, Revision A.03, Gaussian, Inc., Wallingford CT, 2004.

[28]. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[29]. Al-Salami, B. K. Microwave synthesis of some N-phenylhydrazine-1-carbothioamide Schiff bases. Eur. J. Chem. 2018, 9 (2), 74-78.
https://doi.org/10.5155/eurjchem.9.2.74-78.1673

[30]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[31]. Dassault Systѐmes BIOVIA, BIOVIA Workbook, Release 2021; BIOVIA DS Visualizer, Release 2021, San Diego, Dassault Sysѐmes, 2021 https://discover.3ds.com/discovery-studio-visualizer-download (accessed 2022-05-14).

[32]. Islam, N. Correlation between the electronegativity ansatz of Mulliken and Gordy. J. Mol. Struct.: Theochem 2010, 947 (1-3), 123.
https://doi.org/10.1016/j.theochem.2010.01.039

[33]. Onoda, J.; Ondráček, M.; Jelínek, P.; Sugimoto, Y. Electronegativity determination of individual surface atoms by atomic force microscopy. Nat Commun 2017, 8 (1), 15155.
https://doi.org/10.1038/ncomms15155

[34]. Ballard, A. J.; Dellago, C. Toward the Mechanism of Ionic Dissociation in Water. J. Phys. Chem. B. 2012, 116 (45), 13490-13497.
https://doi.org/10.1021/jp309300b

[35]. Kaupp, M.; Danovich, D.; Shaik, S. Chemistry is about energy and its changes: A critique of bond-length/bond-strength correlations. Coord. Chem. Rev. 2017, 344, 355-362.
https://doi.org/10.1016/j.ccr.2017.03.002

[36]. Szwarc, M. Bond dissociation energies. Q. Rev., Chem. Soc. 1951, 5 (1), 22.
https://doi.org/10.1039/qr9510500022

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).