European Journal of Chemistry

The mystery of chemistry behind the mechanism of action of anti-HIV drugs: A docking approach at an atomic level


Main Article Content

Mohammad Suhail


The effect of HIV-1 on a human’s immune system cannot be ignored. This is the virus that reduces the power of the immune system to fight against any disease. Of course, many anti-HIV drugs are available, and many computational studies have been done to find out their mechanism of action, but the computational study regarding the chemistry behind the mechanism of action was not done yet. Therefore, the main objective of the study was to clarify the chemistry behind the mechanism of action of commercially available anti-HIV drugs. The drugs taken in the presented study were Entry Inhibitors (EIs) and Non-nucleoside reverse transcriptase inhibitors. First, literature data was evaluated computationally to ensure the reliability of the software used for the presented study. It was found that interaction-based experimental results and computationally evaluated results of the literature data were the same. After that, by following the same procedure, a docking study was done on the drugs taken in the current study. In addition, the residues involved in the interactions of EIs and NNRTIs with their receptors were studied to determine the chemistry that acts behind the action of both. It was found that EIs and NNRTIs work differently. It was also predicted that the derivatization of both drugs could make them more effective and active. Therefore, the presented study will be very helpful in the field of medicinal science.

icon graph This Abstract was viewed 430 times | icon graph Article PDF downloaded 167 times

How to Cite
Suhail, M. The Mystery of Chemistry Behind the Mechanism of Action of Anti-HIV Drugs: A Docking Approach at an Atomic Level. Eur. J. Chem. 2021, 12, 432-438.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Murphy, P. M. Nat. Immunol. 2001, 2 (2), 116-122.

[2]. Liu, R.; Paxton, W. A.; Choe, S.; Ceradini, D.; Martin, S. R.; Horuk, R.; MacDonald, M. E.; Stuhlmann, H.; Koup, R. A.; Landau, N. R. Cell 1996, 86 (3), 367-377.

[3]. Harrison, S. C. Nat. Struct. Mol. Biol. 2008, 15 (7), 690-698.

[4]. Shaik, M. M.; Peng, H.; Lu, J.; Rits-Volloch, S.; Xu, C.; Liao, M.; Chen, B. Nature 2019, 565 (7739), 318-323.

[5]. Lin, G.; Baribaud, F.; Romano, J.; Doms, R. W.; Hoxie, J. A. J. Virol. 2003, 77 (2), 931-942.

[6]. Doranz, B. J.; Lu, Z. H.; Rucker, J.; Zhang, T. Y.; Sharron, M.; Cen, Y. H.; Wang, Z. X.; Guo, H. H.; Du, J. G.; Accavitti, M. A.; Doms, R. W.; Peiper, S. C. J. Virol. 1997, 71 (9), 6305-6314.

[7]. Duma, L.; Häussinger, D.; Rogowski, M.; Lusso, P.; Grzesiek, S. J. Mol. Biol. 2007, 365 (4), 1063-1075.

[8]. Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G. W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R. C.; Zhao, Q.; Wu, B. Science 2013, 341 (6152), 1387-1390.

[9]. Zheng, Y.; Han, G. W.; Abagyan, R.; Wu, B.; Stevens, R. C.; Cherezov, V.; Kufareva, I.; Handel, T. M. Immunity 2017, 46 (6), 1005-1017.e5.

[10]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30 (16), 2785-2791.

[11]. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31 (2), 455-461.

[12]. Laskowski, R. A.; Swindells, M. B. J. Chem. Inf. Model. 2011, 51 (10), 2778-2786.

[13]. Zhao, Z.; Wolkenberg, S. E.; Lu, M.; Munshi, V.; Moyer, G.; Feng, M.; Carella, A. V.; Ecto, L. T.; Gabryelski, L. J.; Lai, M.-T.; Prasad, S. G.; Yan, Y.; McGaughey, G. B.; Miller, M. D.; Lindsley, C. W.; Hartman, G. D.; Vacca, J. P.; Williams, T. M. Bioorg. Med. Chem. Lett. 2008, 18 (2), 554-559.

[14]. Peng, P.; Chen, H.; Zhu, Y.; Wang, Z.; Li, J.; Luo, R.-H.; Wang, J.; Chen, L.; Yang, L.-M.; Jiang, H.; Xie, X.; Wu, B.; Zheng, Y.-T.; Liu, H. J. Med. Chem. 2018, 61 (21), 9621-9636.

[15]. Suhail, M.; Mukhtar, S. D.; Ali, I.; Ansari, A.; Arora, S. Eur. J. Chem. 2020, 11 (2), 139-144.

[16]. Suhail, M.; Ali, I. Anticancer Agents Med. Chem. 2021, 21 (15), 2075-2081.

[17]. Ali, I.; Suhail, M.; ALOthman, Z. A.; Al-Mohaimeed, A. M.; Alwarthan, A. Sep. Purif. Technol. 2020, 236 (116256), 116256.

[18]. Suhail, M. J. Comput. Biophys. Chem. 2021, 20 (04), 417-432.

[19]. Suhail, M. J. Comput. Biophys. Chem. 2021, 20 (05), 501-516.

[20]. Corbau, R.; Mori, J.; Phillips, C.; Fishburn, L.; Martin, A.; Mowbray, C.; Panton, W.; Smith-Burchnell, C.; Thornberry, A.; Ringrose, H.; Knöchel, T.; Irving, S.; Westby, M.; Wood, A.; Perros, M. Antimicrob. Agents Chemother. 2010, 54 (10), 4451-4463.

[21]. Livingstone, C. D.; Barton, G. J. Bioinformatics 1993, 9 (6), 745-756.

[22]. Gilar, M.; Yu, Y.-Q.; Ahn, J.; Xie, H.; Han, H.; Ying, W.; Qian, X. Anal. Biochem. 2011, 417 (1), 80-88.

[23]. Butorov, E. V. Antivir. Chem. Chemother. 2015, 24 (1), 39-46.

[24]. Bol, S.; Bunnik, E. M. BMC Vet. Res. 2015, 11 (1), 284.

[25]. Loh, P. C.; Oie, H. K. J. Virol. 1969, 4 (6), 890-895.

Supporting Agencies


Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).