European Journal of Chemistry 2022, 13(3), 358-368 | doi: https://doi.org/10.5155/eurjchem.13.3.358-368.2251 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Graphene: A future science material for water treatment


Mohammad Suhail (1,*) orcid

(1) Department of Chemistry, Siddhartha Degree College, Aakhlaur Kheri (Saharanpur), Uttar Pradesh-251311, India
(*) Corresponding Author

Received: 09 Mar 2022 | Revised: 23 Apr 2022 | Accepted: 27 Apr 2022 | Published: 30 Sep 2022 | Issue Date: September 2022

Abstract


Graphene is showing its versatility continuously by playing the most important role in many fields of science. Water treatment is one of them. In the present scenario, the supply of the safe and pure water has become the main priority. Especially, the most denser and populated areas are demanding of it. Although water treatment is done by applying different methods using different materials, no material showed the results as good as graphene-based materials. The current article deliberates not only the main properties of graphene but also their importance in the treatment of water. Besides, the current review also pronounces the method of graphene separation from the water after use and recycling.  Efforts are made to discuss the role of graphene materials in the treatment of water. Henceforward, this article will definitely be very helpful for researchers, academicians, and administration authorities who are planning and developing new strategies for the removal of ionic as well as organic impurities from water.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between November 15, 2022 and December 28, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between November 15, 2022 and December 28, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between November 15, 2022 and December 28, 2022 (Voucher code: PhD2022).

4. The article processing fee will not be charged from authors who have at least one publication in the European Journal of Chemistry between November 15, 2022 and December 28, 2022 (Voucher code: (Voucher code: AUTHOR2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Graphene; Adsorption; Water treatment; Future perspectives; Membrane processes; Graphene-based materials

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.3.358-368.2251

Links for Article


| | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 133 times | icon graph PDF Article downloaded 39 times


References


[1]. Popkin, B. M.; D'Anci, K. E.; Rosenberg, I. H. Water, hydration, and health: Nutrition Reviews©, Vol. 68, No. 8. Nutr. Rev. 2010, 68, 439-458.
https://doi.org/10.1111/j.1753-4887.2010.00304.x

[2]. Cosgrove, W. J.; Loucks, D. P. Water management: Current and future challenges and research directions: Water management research challenges. Water Resour. Res. 2015, 51, 4823-4839.
https://doi.org/10.1002/2014WR016869

[3]. Ali, I.; Suhail, M.; López, E. C.; Khattab, R. A.; Albishri, H. M. Advances in graphene-based materials for the treatment of water. Arab. J. Geosci. 2022, 15 (6), 521.
https://doi.org/10.1007/s12517-022-09790-0

[4]. Li, M.; Zamyadi, A.; Zhang, W.; Dumée, L. F.; Gao, L. Algae-based water treatment: A promising and sustainable approach. J. Water Proc.engineering 2022, 46, 102630.
https://doi.org/10.1016/j.jwpe.2022.102630

[5]. Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj clean water 2019, 2 (1), 15.
https://doi.org/10.1038/s41545-019-0039-9

[6]. Suhail, M.; Singh, K. P.; Ali, I. Effects of crude sugarcane factory effluent on the morphological and biochemical parameters of chickpeas. Indones. J. Agric. Sci. 2020, 21, 30.
https://doi.org/10.21082/ijas.v21n1.2020.p30-38

[7]. Ali, I.; Suhail, M.; Alharbi, O. M. L.; Hussain, I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 137-160.
https://doi.org/10.1080/10826076.2019.1579739

[8]. Shao, M.; Tang, X.; Zhang, Y.; Li, W. City clusters in China: air and surface water pollution. Front. Ecol. Environ. 2006, 4, 353-361.
https://doi.org/10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2

[9]. Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M. C.; Gordon, B.; Hunter, P. R.; Medlicott, K.; Johnston, R. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 2019, 222, 765-777.
https://doi.org/10.1016/j.ijheh.2019.05.004

[10]. Srinivasan, V.; Aravindhan, D.; Jeeva, T.; Sambasivam, J.; Keerthana, S. E. AI Based Water Treatment using Graphene Nano-Material. Int. J. Eng. Res. Technol. (Ahmedabad) 2022, 11 (2), 202-205.

[11]. Ashbolt, N. J. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 2004, 198, 229-238.
https://doi.org/10.1016/j.tox.2004.01.030

[12]. Watson, J. T.; Gayer, M.; Connolly, M. A. Epidemics after natural disasters. Emerg. Infect. Dis. 2007, 13, 1-5.
https://doi.org/10.3201/eid1301.060779

[13]. Suhail, M. The target determination and the mechanism of action of chiral-antimalarial drugs: A docking approach. J. Comput. Biophys. Chem. 2021, 20, 501-516.
https://doi.org/10.1142/S2737416521500290

[14]. Popescu, R. C.; Fufă, M. O. M.; Grumezescu, A. M.; Holban, A. M. Nanostructurated membranes for the microbiological purification of drinking water. In Water Purification; Elsevier, 2017; pp. 421-446.
https://doi.org/10.1016/B978-0-12-804300-4.00012-5

[15]. Naushad, M., Ed.; A new generation material graphene: Applications in water technology; Springer International Publishing: Cham, 2019.
https://doi.org/10.1007/978-3-319-75484-0

[16]. Ali, I.; Alharbi, O. M. L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V. A. Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. Int. 2018, 25, 7315-7329.
https://doi.org/10.1007/s11356-018-1315-9

[17]. Liu, Y. Application of graphene oxide in water treatment. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 012060.
https://doi.org/10.1088/1755-1315/94/1/012060

[18]. Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454-10462.
https://doi.org/10.1021/es203439v

[19]. Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environ. Sci. Pollut. Res. Int. 2017, 24, 7938-7958.
https://doi.org/10.1007/s11356-017-8388-8

[20]. Nidheesh, P. V. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ. Sci. Pollut. Res. Int. 2017, 24, 27047-27069.
https://doi.org/10.1007/s11356-017-0481-5

[21]. Riaz, M. A.; McKay, G.; Saleem, J. 3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water. Environ. Sci. Pollut. Res. Int. 2017, 24, 27731-27745.
https://doi.org/10.1007/s11356-017-0606-x

[22]. Khraisheh, M.; Elhenawy, S.; AlMomani, F.; Al-Ghouti, M.; Hassan, M. K.; Hameed, B. H. Recent progress on nanomaterial-based membranes for water treatment. Membranes (Basel) 2021, 11, 995.
https://doi.org/10.3390/membranes11120995

[23]. Marsh, H.; Rodríguez-Reinoso, F. Production and Reference Material. In Activated Carbon; Elsevier, 2006; pp. 454-508.
https://doi.org/10.1016/B978-008044463-5/50023-6

[24]. Tabish, T. A.; Memon, F. A.; Gomez, D. E.; Horsell, D. W.; Zhang, S. A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep. 2018, 8 (1), 1817.
https://doi.org/10.1038/s41598-018-19978-8

[25]. Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10-29.
https://doi.org/10.1016/j.jsamd.2020.01.006

[26]. Li, C.; Li, D.; Yang, J.; Zeng, X.; Yuan, W. Preparation of single- and few-layer graphene sheets using Co deposition on SiC substrate. J. Nanomater. 2011, 2011, 1-7.
https://doi.org/10.1155/2011/319624

[27]. Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65-83.
https://doi.org/10.1007/s40089-015-0176-1

[28]. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620.
https://doi.org/10.1021/ja807449u

[29]. Tomai, T.; Ishiguro, S.; Tamura, N.; Nakayasu, Y.; Honma, I. Structure-based selective adsorption of graphene on a gel surface: Toward improving the quality of graphene nanosheets. Langmuir 2017, 33, 5406-5411.
https://doi.org/10.1021/acs.langmuir.7b00254

[30]. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Graphene/elastomer nanocomposites. Carbon N. Y. 2015, 95, 460-484.
https://doi.org/10.1016/j.carbon.2015.08.055

[31]. Ahmadi-Moghadam, B.; Taheri, F. Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J. Mater. Sci. 2014, 49, 6180-6190.
https://doi.org/10.1007/s10853-014-8332-y

[32]. Bokhonov, B. B.; Dudina, D. V.; Ukhina, A. V.; Korchagin, M. A.; Bulina, N. V.; Mali, V. I.; Anisimov, A. G. Formation of self-supporting porous graphite structures by Spark Plasma Sintering of nickel-amorphous carbon mixtures. J. Phys. Chem. Solids 2015, 76, 192-202.
https://doi.org/10.1016/j.jpcs.2014.09.007

[33]. Armano, A.; Agnello, S. Two-dimensional carbon: A review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene. C 2019, 5, 67.
https://doi.org/10.3390/c5040067

[34]. Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 2015, 7, 6944-6956.
https://doi.org/10.1039/C4NR06942K

[35]. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.
https://doi.org/10.1038/nmat3064

[36]. Chung, D. D. L. A review of exfoliated graphite. J. Mater. Sci. 2016, 51, 554-568.
https://doi.org/10.1007/s10853-015-9284-6

[37]. Segal, M. Selling graphene by the ton. Nat. Nanotechnol. 2009, 4, 612-614.
https://doi.org/10.1038/nnano.2009.279

[38]. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.
https://doi.org/10.1002/adma.201001068

[39]. Ruan, M.; Hu, Y.; Guo, Z.; Dong, R.; Palmer, J.; Hankinson, J.; Berger, C.; de Heer, W. A. Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS Bull. 2012, 37, 1138-1147.
https://doi.org/10.1557/mrs.2012.231

[40]. Jang, B.; Kim, B.; Kim, J.-H.; Lee, H.-J.; Sumigawa, T.; Kitamura, T. Asynchronous cracking with dissimilar paths in multilayer graphene. Nanoscale 2017, 9, 17325-17333.
https://doi.org/10.1039/C7NR04443G

[41]. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458-2462.
https://doi.org/10.1021/nl801457b

[42]. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
https://doi.org/10.1126/science.1158877

[43]. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
https://doi.org/10.1126/science.1157996

[44]. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2 (1), 571.
https://doi.org/10.1038/ncomms1583

[45]. Zaib, Q.; Fath, H. Application of carbon nano-materials in desalination processes. Desalination Water Treat. 2013, 51, 627-636.
https://doi.org/10.1080/19443994.2012.722772

[46]. Leenaerts, O.; Partoens, B.; Peeters, F. M. Graphene: A perfect nanoballoon. Appl. Phys. Lett. 2008, 93, 193107.
https://doi.org/10.1063/1.3021413

[47]. Alsharaeh, E.; Ahmed, F.; Aldawsari, Y.; Khasawneh, M.; Abuhimd, H.; Alshahrani, M. Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Sci. Rep. 2016, 6 (1), 29854.
https://doi.org/10.1038/srep29854

[48]. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870-873.
https://doi.org/10.1038/nature02817

[49]. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752-1758.
https://doi.org/10.1021/nl803279t

[50]. Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 2003, 107, 3712-3718.
https://doi.org/10.1021/jp027500u

[51]. Suk, M. E.; Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590-1594.
https://doi.org/10.1021/jz100240r

[52]. Jaswal, R.; Shrestha, S.; Shrestha, B. K.; Kumar, D.; Park, C. H.; Kim, C. S. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111213.
https://doi.org/10.1016/j.msec.2020.111213

[53]. Guardia, L.; Villar-Rodil, S.; Paredes, J. I.; Rozada, R.; Martínez-Alonso, A.; Tascón, J. M. D. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation. Carbon N. Y. 2012, 50, 1014-1024.
https://doi.org/10.1016/j.carbon.2011.10.005

[54]. Storm, M. M.; Overgaard, M.; Younesi, R.; Reeler, N. E. A.; Vosch, T.; Nielsen, U. G.; Edström, K.; Norby, P. Reduced graphene oxide for Li-air batteries: The effect of oxidation time and reduction conditions for graphene oxide. Carbon N. Y. 2015, 85, 233-244.
https://doi.org/10.1016/j.carbon.2014.12.104

[55]. Ibrahim, A.; Klopocinska, A.; Horvat, K.; Abdel Hamid, Z. Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers (Basel) 2021, 13, 2869.
https://doi.org/10.3390/polym13172869

[56]. Adetayo, A.; Runsewe, D. Synthesis and fabrication of graphene and graphene oxide: A review. Open J. Compos. Mater. 2019, 09, 207-229.
https://doi.org/10.4236/ojcm.2019.92012

[57]. Shih, C.-J.; Lin, S.; Sharma, R.; Strano, M. S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir 2012, 28, 235-241.
https://doi.org/10.1021/la203607w

[58]. Dimiev, A. M.; Alemany, L. B.; Tour, J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 2013, 7, 576-588.
https://doi.org/10.1021/nn3047378

[59]. Dideikin, A. T.; Vul', A. Y. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 2019, 6, 149.
https://doi.org/10.3389/fphy.2018.00149

[60]. Gan, X.; Teng, Y.; Ren, W.; Ma, J.; Christie, P.; Luo, Y. Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 2017, 27, 527-536.
https://doi.org/10.1016/S1002-0160(17)60348-5

[61]. Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 2013, 47, 6288-6296.
https://doi.org/10.1021/es400483k

[62]. Metcalfe, I. M.; Healy, T. W. Charge-regulation modelling of the Schulze-Hardy rule and related coagulation effects. Faraday Discuss. Chem. SOC., 1990, 90, 335-344.
https://doi.org/10.1039/DC9909000335

[63]. Ren, X.; Li, J.; Tan, X.; Shi, W.; Chen, C.; Shao, D.; Wen, T.; Wang, L.; Zhao, G.; Sheng, G.; Wang, X. Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ. Sci. Technol. 2014, 48, 5493-5500.
https://doi.org/10.1021/es404996b

[64]. Banerjee, A. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011, 2011 (4), 35-65.
https://doi.org/10.2147/NSA.S9040

[65]. Ali, I.; Gupta, V. K.; Aboul-Enein, H. Y. Metal ion speciation and capillary electrophoresis: Application in the new millennium. Electrophoresis 2005, 26, 3988-4002.
https://doi.org/10.1002/elps.200500216

[66]. Wang, S.; Sun, H.; Ang, H. M.; Tadé, M. O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336-347.
https://doi.org/10.1016/j.cej.2013.04.070

[67]. Ji, L.; Chen, W.; Duan, L.; Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 2009, 43, 2322-2327.
https://doi.org/10.1021/es803268b

[68]. Ali, I.; Alharbi, O. M. L.; Alothman, Z. A.; Badjah, A. Y. Kinetics, thermodynamics, and modeling of Amido black dye photodegradation in water using co/TiO2 nanoparticles. Photochem. Photobiol. 2018, 94, 935-941.
https://doi.org/10.1111/php.12937

[69]. Chen, C.; Zhang, Y.; Zeng, J.; Zhang, F.; Zhou, K.; Bowen, C. R.; Zhang, D. Aligned macroporous TiO2/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications. Appl. Surf. Sci. 2017, 424, 170-176.
https://doi.org/10.1016/j.apsusc.2017.02.137

[70]. Beura, R.; Thangadurai, P. Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J. Phys. Chem. Solids 2017, 102, 168-177.
https://doi.org/10.1016/j.jpcs.2016.11.024

[71]. Mukherjee, M.; Ghorai, U. K.; Samanta, M.; Santra, A.; Das, G. P.; Chattopadhyay, K. K. Graphene wrapped Copper Phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment. Appl. Surf. Sci. 2017, 418, 156-162.
https://doi.org/10.1016/j.apsusc.2017.01.222

[72]. Hu, P.; Niu, J.; Yu, M.; Lin, S.-Y. Facile solvothermal synthesis of reduced graphene oxide-BiPO 4 nanocomposite with enhanced photocatalytic activity. Fenxi Huaxue 2017, 45, 357-362.
https://doi.org/10.1016/S1872-2040(17)61000-4

[73]. Borthakur, P.; Boruah, P. K.; Darabdhara, G.; Sengupta, P.; Das, M. R.; Boronin, A. I.; Kibis, L. S.; Kozlova, M. N.; Fedorov, V. E. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J. Environ. Chem. Eng. 2016, 4, 4600-4611.
https://doi.org/10.1016/j.jece.2016.10.023

[74]. Hareesh, K.; Joshi, R. P.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D. Synthesis of Ag-reduced graphene oxide nanocomposite by gamma radiation assisted method and its photocatalytic activity. Vacuum 2016, 124, 40-45.
https://doi.org/10.1016/j.vacuum.2015.11.011

[75]. Fu, X.; Zhang, Y.; Cao, P.; Ma, H.; Liu, P.; He, L.; Peng, J.; Li, J.; Zhai, M. Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant. Radiat. Phys. Chem. Oxf. Engl. 1993 2016, 123, 79-86.
https://doi.org/10.1016/j.radphyschem.2016.02.016

[76]. Morales-Torres, S.; Pastrana-Martínez, L. M.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Design of graphene-based TiO2 photocatalysts-a review. Environ. Sci. Pollut. Res. Int. 2012, 19, 3676-3687.
https://doi.org/10.1007/s11356-012-0939-4

[77]. Huang, J.-Q.; Lin, X.; Tan, H.; Du, X.; Zhang, B. Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperatures. J. Energy Chem. 2020, 43, 1-7.
https://doi.org/10.1016/j.jechem.2019.07.011

[78]. Yang, J.; Gunasekaran, S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon N. Y. 2013, 51, 36-44.
https://doi.org/10.1016/j.carbon.2012.08.003

[79]. Gandhi, M. R.; Vasudevan, S.; Shibayama, A.; Yamada, M. Graphene and graphene-based composites: A Rising Star in water purification - A comprehensive overview. ChemistrySelect 2016, 1, 4358-4385.
https://doi.org/10.1002/slct.201600693

[80]. Hu, C.; Lu, T.; Chen, F.; Zhang, R. A brief review of graphene-metal oxide composites synthesis and applications in photocatalysis. J. Chin. Adv. Mater. Soc. 2013, 1, 21-39.
https://doi.org/10.1080/22243682.2013.771917

[81]. Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504-1512.
https://doi.org/10.1021/nn305288z

[82]. Tan, L.-L.; Chai, S.-P.; Mohamed, A. R. Synthesis and applications of graphene-based TiO2photocatalysts. ChemSusChem 2012, 5, 1868-1882.
https://doi.org/10.1002/cssc.201200480

[83]. Lin, L.; Wang, H.; Jiang, W.; Mkaouar, A. R.; Xu, P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J. Hazard. Mater. 2017, 333, 162-168.
https://doi.org/10.1016/j.jhazmat.2017.02.044

[84]. Deng, Q.; Zhang, W.; Lan, T.; Xie, J.; Xie, W.; Liu, Z.; Huang, Y.; Wei, M. Anatase TiO 2 quantum dots with a narrow band gap of 2.85 eV based on surface hydroxyl groups exhibiting significant photodegradation property. Eur. J. Inorg. Chem. 2018, 2018, 1506-1510.
https://doi.org/10.1002/ejic.201800097

[85]. Kang, W.; Jimeng, X.; Xitao, W. The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 2016, 360, 270-275.
https://doi.org/10.1016/j.apsusc.2015.10.190

[86]. da Silva, M. P.; de Souza, A. C. A.; de Lima Ferreira, L. E.; Pereira Neto, L. M.; Nascimento, B. F.; de Araújo, C. M. B.; Fraga, T. J. M.; da Motta Sobrinho, M. A.; Ghislandi, M. G. Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized graphene oxide as nanocatalyst. Environmental Advances 2021, 4, 100064.
https://doi.org/10.1016/j.envadv.2021.100064

[87]. Chan, K. H.; Chu, W. Modeling the reaction kinetics of Fenton's process on the removal of atrazine. Chemosphere 2003, 51, 305-311.
https://doi.org/10.1016/S0045-6535(02)00812-3

[88]. Luna-Sanguino, G.; Ruíz-Delgado, A.; Duran-Valle, C. J.; Malato, S.; Faraldos, M.; Bahamonde, A. Impact of water matrix and oxidant agent on the solar assisted photodegradation of a complex mix of pesticides over titania-reduced graphene oxide nanocomposites. Catal. Today 2021, 380, 114-124.
https://doi.org/10.1016/j.cattod.2021.03.022

[89]. Arshad, A.; Iqbal, J.; Siddiq, M.; Ali, M. U.; Ali, A.; Shabbir, H.; Nazeer, U. B.; Saleem, M. S. Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 2017, 43, 10654-10660.
https://doi.org/10.1016/j.ceramint.2017.03.165

[90]. Liu, S.; Sun, H.; Liu, S.; Wang, S. Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem. Eng. J. 2013, 214, 298-303.
https://doi.org/10.1016/j.cej.2012.10.058

[91]. Malinauskas, A.; Ruzgas, T.; Gorton, L. Electrochemical study of the redox dyes Nile Blue and Toluidine Blue adsorbed on graphite and zirconium phosphate modified graphite. J. Electroanal. Chem. (Lausanne Switz) 2000, 484, 55-63.
https://doi.org/10.1016/S0022-0728(00)00059-0

[92]. Fan, C.; Liu, Q.; Ma, T.; Shen, J.; Yang, Y.; Tang, H.; Wang, Y.; Yang, J. Fabrication of 3D CeVO 4 /graphene aerogels with efficient visible-light photocatalytic activity. Ceram. Int. 2016, 42, 10487-10492.
https://doi.org/10.1016/j.ceramint.2016.03.072

[93]. Khan, M. E.; Khan, M. M.; Cho, M. H. CdS-graphene nanocomposite for efficient visible-light-driven photocatalytic and photoelectrochemical applications. J. Colloid Interface Sci. 2016, 482, 221-232.
https://doi.org/10.1016/j.jcis.2016.07.070

[94]. Kalyani, R.; Gurunathan, K. PTh-rGO-TiO2 nanocomposite for photocatalytic hydrogen production and dye degradation. J. Photochem. Photobiol. A Chem. 2016, 329, 105-112.
https://doi.org/10.1016/j.jphotochem.2016.05.026

[95]. Umukoro, E. H.; Peleyeju, M. G.; Ngila, J. C.; Arotiba, O. A. Photocatalytic degradation of acid blue 74 in water using Ag-Ag 2 O-Zno nanostuctures anchored on graphene oxide. Solid State Sci. 2016, 51, 66-73.
https://doi.org/10.1016/j.solidstatesciences.2015.11.015

[96]. Xiao, Y.; Liu, J.; Lin, Y.; Lin, W.; Fang, Y. Novel graphene oxide-silver nanorod composites with enhanced photocatalytic performance under visible light irradiation. J. Alloys Compd. 2017, 698, 170-177.
https://doi.org/10.1016/j.jallcom.2016.12.160

[97]. Jia, Y.; Wu, C.; Lee, B. W.; Liu, C.; Kang, S.; Lee, T.; Park, Y. C.; Yoo, R.; Lee, W. Magnetically separable sulfur-doped SnFe 2 O 4 /graphene nanohybrids for effective photocatalytic purification of wastewater under visible light. J. Hazard. Mater. 2017, 338, 447-457.
https://doi.org/10.1016/j.jhazmat.2017.05.057

[98]. Anirudhan, T. S.; Shainy, F.; Christa, J. Synthesis and characterization of polyacrylic acid- grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies. J. Hazard. Mater. 2017, 324, 117-130.
https://doi.org/10.1016/j.jhazmat.2016.09.073

[99]. Karthik, R.; Vinoth Kumar, J.; Chen, S.-M.; Karuppiah, C.; Cheng, Y.-H.; Muthuraj, V. A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9, 6547-6559.
https://doi.org/10.1021/acsami.6b14242

[100]. Shen, H.; Wang, J.; Jiang, J.; Luo, B.; Mao, B.; Shi, W. All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation. Chem. Eng. J. 2017, 313, 508-517.
https://doi.org/10.1016/j.cej.2016.11.161

[101]. Nandi, D.; Gupta, K.; Ghosh, A. K.; De, A.; Banerjee, S.; Ghosh, U. C. Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. J. Nanopart. Res. 2012, 14, 1272.
https://doi.org/10.1007/s11051-012-1272-z

[102]. Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211-212, 406-411.
https://doi.org/10.1016/j.cej.2012.09.078

[103]. Huang, Z.-H.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q.-H.; Kang, F. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 2011, 27, 7558-7562.
https://doi.org/10.1021/la200606r

[104]. Madadrang, C. J.; Kim, H. Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186-1193.
https://doi.org/10.1021/am201645g

[105]. Musico, Y. L. F.; Santos, C. M.; Dalida, M. L. P.; Rodrigues, D. F. Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite. J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 3789.
https://doi.org/10.1039/c3ta01616a

[106]. Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon N. Y. 2012, 50, 4856-4864.
https://doi.org/10.1016/j.carbon.2012.06.013

[107]. McDonogh, R. M.; Fell, C. J. D.; Fane, A. G. Surface charge and permeability in the ultrafiltration of non-flocculating colloids. J. Memb. Sci. 1984, 21, 285-294.
https://doi.org/10.1016/S0376-7388(00)80219-7

[108]. Jabeen, H.; Chandra, V.; Jung, S.; Lee, J. W.; Kim, K. S.; Kim, S. B. Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 2011, 3, 3583-3585.
https://doi.org/10.1039/c1nr10549c

[109]. Zhu, J.; Wei, S.; Gu, H.; Rapole, S. B.; Wang, Q.; Luo, Z.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 2012, 46, 977-985.
https://doi.org/10.1021/es2014133

[110]. Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interface Sci. 2012, 369, 381-387.
https://doi.org/10.1016/j.jcis.2011.12.023

[111]. Zhang, K.; Dwivedi, V.; Chi, C.; Wu, J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater. 2010, 182, 162-168.
https://doi.org/10.1016/j.jhazmat.2010.06.010

[112]. Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 1992-2001.
https://doi.org/10.1039/C2TA00406B

[113]. Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204-213.
https://doi.org/10.1016/j.cej.2013.01.090

[114]. Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859-868.
https://doi.org/10.1016/j.ijbiomac.2018.03.028

[115]. Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. (Camb.) 2011, 47, 3942-3944.
https://doi.org/10.1039/c1cc00005e

[116]. Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979-3986.
https://doi.org/10.1021/nn1008897

[117]. Bhunia, P.; Kim, G.; Baik, C.; Lee, H. A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem. Commun. (Camb.) 2012, 48, 9888.
https://doi.org/10.1039/c2cc35120j

[118]. Fan, L.; Luo, C.; Sun, M.; Li, X.; Qiu, H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B Biointerfaces 2013, 103, 523-529.
https://doi.org/10.1016/j.colsurfb.2012.11.006

[119]. Goswami, S.; Banerjee, P.; Datta, S.; Mukhopadhayay, A.; Das, P. Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process Saf. Environ. Prot. 2017, 106, 163-172.
https://doi.org/10.1016/j.psep.2017.01.003

[120]. Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330-344.
https://doi.org/10.1016/j.watres.2014.09.026

[121]. Bayazit, Ş. S.; Yildiz, M.; Aşçi, Y. S.; Şahin, M.; Bener, M.; Eğlence, S.; Abdel Salam, M. Rapid adsorptive removal of naphthalene from water using graphene nanoplatelet/MIL-101 (Cr) nanocomposite. J. Alloys Compd. 2017, 701, 740-749.
https://doi.org/10.1016/j.jallcom.2017.01.111

[122]. Zhao, G.; Li, J.; Wang, X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chem. Eng. J. 2011, 173, 185-190.
https://doi.org/10.1016/j.cej.2011.07.072

[123]. Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 2011, 23, 3959-3963.
https://doi.org/10.1002/adma.201101007

[124]. Ion, A. C.; Radu, E.; Sirbu, F.; Ion, I. Adsorption of endocrine disruptors on exfoliated graphene nanoplatelets. Environ. Eng. Manag. J. 2015, 14, 551-558.
https://doi.org/10.30638/eemj.2015.059

[125]. Zhu, J.; Sadu, R.; Wei, S.; Chen, D. H.; Haldolaarachchige, N.; Luo, Z.; Gomes, J. A.; Young, D. P.; Guo, Z. Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J. Solid State Sci. Technol. 2012, 1, M1-M5.
https://doi.org/10.1149/2.010201jss

[126]. Bradder, P.; Ling, S. K.; Wang, S.; Liu, S. Dye adsorption on layered graphite oxide. J. Chem. Eng. Data 2011, 56, 138-141.
https://doi.org/10.1021/je101049g

[127]. Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H.; Wu, D. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197-203.
https://doi.org/10.1016/j.colsurfb.2011.10.019

[128]. Li, C.; Dong, Y.; Yang, J.; Li, Y.; Huang, C. Modified nano-graphite/Fe3O4 composite as efficient adsorbent for the removal of methyl violet from aqueous solution. J. Mol. Liq. 2014, 196, 348-356.
https://doi.org/10.1016/j.molliq.2014.04.010

[129]. Banerjee, P.; Sau, S.; Das, P.; Mukhopadhayay, A. Optimization and modelling of synthetic azo dye wastewater treatment using Graphene oxide nanoplatelets: Characterization toxicity evaluation and optimization using Artificial Neural Network. Ecotoxicol. Environ. Saf. 2015, 119, 47-57.
https://doi.org/10.1016/j.ecoenv.2015.04.022

[130]. Banerjee, P.; Das, P.; Zaman, A.; Das, P. Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: Evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 2016, 101, 45-53.
https://doi.org/10.1016/j.psep.2016.01.021

[131]. Ion, A. C.; Alpatova, A.; Ion, I.; Culetu, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2011, 176, 588-595.
https://doi.org/10.1016/j.mseb.2011.01.018

[132]. Xu, J.; Wang, L.; Zhu, Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418-8425.
https://doi.org/10.1021/la301476p

[133]. Chang, C.-F.; Truong, Q. D.; Chen, J.-R. RETRACTED: Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 2013, 264, 329-334.
https://doi.org/10.1016/j.apsusc.2012.10.022

[134]. Deng, X.; Lü, L.; Li, H.; Luo, F. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 2010, 183, 923-930.
https://doi.org/10.1016/j.jhazmat.2010.07.117

[135]. Lee, Y.-C.; Yang, J.-W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem. 2012, 18, 1178-1185.
https://doi.org/10.1016/j.jiec.2012.01.005

[136]. Park, C. M.; Wang, D.; Han, J.; Heo, J.; Su, C. Evaluation of the colloidal stability and adsorption performance of reduced graphene oxide-elemental silver/magnetite nanohybrids for selected toxic heavy metals in aqueous solutions. Appl. Surf. Sci. 2019, 471, 8-17.
https://doi.org/10.1016/j.apsusc.2018.11.240

[137]. Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682.
https://doi.org/10.1039/c3dt33097d

[138]. Maliyekkal, S. M.; Sreeprasad, T. S.; Krishnan, D.; Kouser, S.; Mishra, A. K.; Waghmare, U. V.; Pradeep, T. Graphene: A reusable substrate for unprecedented adsorption of pesticides. Small 2013, 9, 273-283.
https://doi.org/10.1002/smll.201201125

[139]. Ion, A. C.; Ion, I.; Culetu, A. Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2011, 176, 504-509.
https://doi.org/10.1016/j.mseb.2010.07.021

[140]. Ain, Q.-U.-; Farooq, M. U.; Jalees, M. I. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J. Water Proc.engineering 2020, 33, 101044.
https://doi.org/10.1016/j.jwpe.2019.101044

[141]. Wang, B.; Král, P. Optimal atomistic modifications of material surfaces: Design of selective nesting sites for biomolecules. Small 2007, 3, 580-584.
https://doi.org/10.1002/smll.200600433

[142]. Yao, M.; Wang, Z.; Liu, Y.; Yang, G.; Chen, J. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr. Polym. 2019, 212, 345-351.
https://doi.org/10.1016/j.carbpol.2019.02.052

[143]. Cortinez, D.; Palma, P.; Castro, R.; Palza, H. A multifunctional bi-phasic graphene oxide/chitosan paper for water treatment. Sep. Purif. Technol. 2020, 235, 116181.
https://doi.org/10.1016/j.seppur.2019.116181

[144]. White, R. L.; White, C. M.; Turgut, H.; Massoud, A.; Tian, Z. R. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J. Taiwan Inst. Chem. Eng. 2018, 85, 18-28.
https://doi.org/10.1016/j.jtice.2018.01.036

[145]. Homaeigohar, S.; Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 2017, 9, e427-e427.
https://doi.org/10.1038/am.2017.135

[146]. O'Hern, S. C.; Boutilier, M. S. H.; Idrobo, J.-C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234-1241.
https://doi.org/10.1021/nl404118f

[147]. Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602-3608.
https://doi.org/10.1021/nl3012853

[148]. Lu, Q.; Huang, R. Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 2009, 01, 443-467.
https://doi.org/10.1142/S1758825109000228

[149]. Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715-3723.
https://doi.org/10.1021/es400571g

[150]. Wang, J.; Chen, Z.; Chen, B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 2014, 48, 4817-4825.
https://doi.org/10.1021/es405227u

[151]. Cohen-Tanugi, D.; Grossman, J. C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 2014, 141, 074704.
https://doi.org/10.1063/1.4892638

[152]. Sint, K.; Wang, B.; Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 2008, 130, 16448-16449.
https://doi.org/10.1021/ja804409f

[153]. Du, H.; Li, J.; Zhang, J.; Su, G.; Li, X.; Zhao, Y. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C Nanomater. Interfaces 2011, 115, 23261-23266.
https://doi.org/10.1021/jp206258u

[154]. Nguyen, T.; Roddick, F.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes (Basel) 2012, 2, 804-840.
https://doi.org/10.3390/membranes2040804

[155]. Manawi, Y.; Kochkodan, V.; Hussein, M. A.; Khaleel, M. A.; Khraisheh, M.; Hilal, N. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 2016, 391, 69-88.
https://doi.org/10.1016/j.desal.2016.02.015

[156]. Liu, G.; Jin, W.; Xu, N. Graphene-based membranes. Chem. Soc. Rev. 2015, 44, 5016-5030.
https://doi.org/10.1039/C4CS00423J

[157]. Löthman, A. P. Graphene Nanopores. In Nanopores; IntechOpen, 2021. https://doi.org/10.5772/intechopen.98737
https://doi.org/10.5772/intechopen.98737

[158]. McGuinness, N. B.; Garvey, M.; Whelan, A.; John, H.; Zhao, C.; Zhang, G.; Dionysiou, D. D.; Byrne, J. A.; Pillai, S. C. Nanotechnology Solutions for Global Water Challenges. In ACS Symposium Series; American Chemical Society: Washington, DC, 2015; pp. 375-411.
https://doi.org/10.1021/bk-2015-1206.ch018

[159]. Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343, 740-742.
https://doi.org/10.1126/science.1250247

[160]. Jiang, D.-E.; Cooper, V. R.; Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 2009, 9, 4019-4024.
https://doi.org/10.1021/nl9021946


How to cite


Suhail, M. Eur. J. Chem. 2022, 13(3), 358-368. doi:10.5155/eurjchem.13.3.358-368.2251
Suhail, M. Graphene: A future science material for water treatment. Eur. J. Chem. 2022, 13(3), 358-368. doi:10.5155/eurjchem.13.3.358-368.2251
Suhail, M. (2022). Graphene: A future science material for water treatment. European Journal of Chemistry, 13(3), 358-368. doi:10.5155/eurjchem.13.3.358-368.2251
Suhail, Mohammad. "Graphene: A future science material for water treatment." European Journal of Chemistry [Online], 13.3 (2022): 358-368. Web. 26 Nov. 2022
Suhail, Mohammad. "Graphene: A future science material for water treatment" European Journal of Chemistry [Online], Volume 13 Number 3 (30 September 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.3.358-368.2251


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(3), 358-368 | doi: https://doi.org/10.5155/eurjchem.13.3.358-368.2251 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.