European Journal of Chemistry 2020, 11(4), 319-323 | doi: https://doi.org/10.5155/eurjchem.11.4.319-323.2047 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex


Cemal Koray Ozer (1) orcid , Gun Binzet (2,*) orcid , Hakan Arslan (3) orcid

(1) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey
(2) Department of Chemistry, Faculty of Education, Mersin University, Mersin, TR-33343, Turkey
(3) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey
(*) Corresponding Author

Received: 13 Oct 2020 | Revised: 05 Nov 2020 | Accepted: 15 Nov 2020 | Published: 31 Dec 2020 | Issue Date: December 2020

Abstract


Herein, we describe the synthesis and characterization of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex, cis-[Cu(L-κ2S,O)2], has been prepared by the reaction of N-(diethyl carbamothioyl)cyclohexanecarboxamide ligand with copper(II) acetate. The green colored crystals of the complex were obtained by slow evaporation of their dichloromethane:ethanol solution (2:1, v:v). The crystal structure of cis-[Cu(L-κ2S,O)2] was obtained by single-crystal X-ray diffraction. The crystal structure reveals an monoclinic C2 (no. 5) space group with cell parameters a = 14.848(3) Å, b = 10.543(2) Å, c = 10.511(2) Å, β = 123.84(3)°, = 1366.7(7) Å3, Z = 2, T = 153(2) K, μ(MoKα) = 0.979 mm-1, Dcalc = 1.327 g/cm3, 4979 reflections measured (6.6° ≤ 2Θ ≤ 50.68°), 2243 unique (Rint = 0.0223, Rsigma = 0.0444) which were used in all calculations. The final R1 was 0.0225 (>2sigma(I)) and wR2 was 0.0490 (all data). The angular structural index parameter, τ4, is equal to 0.40, which confirms the distorted square planar geometry for the title compound. The puckering parameters (q2 = 0.015(3) Å, q3 = 0.576(3) Å, QT = 0.577(3) Å, θ = 1.6(3)° and φ = 20(11)°) of the title complex show that the cyclohexane ring adopts a chair conformation. The two ethyl groups of the diethyl amine group have anti-orientation with respect to one another. The crystal packing shows the molecules stacked in parallel sheets along [010], accompanied by C3-H3A···O1ⁱ (i -x, +y, 1-z) intermolecular contact.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Thiourea; Copper complex; Crystal structure; Chair conformation; Single crystal X‐ray diffraction; Distorted square planar geometry

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.11.4.319-323.2047

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 871 times | icon graph PDF Article downloaded 331 times

Funding information


Mersin University Research Fund [Project No: BAP-SBETB (CKÖ) 2007-1].

Citations

/


[1]. Cemal Koray Ozer, Ummuhan Solmaz, Hakan Arslan
Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide
European Journal of Chemistry  12(4), 439, 2021
DOI: 10.5155/eurjchem.12.4.439-449.2196
/


References


[1]. Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Z. Chem. 2010, 21(3), 81-91.
https://doi.org/10.1002/zfch.19810210302

[2]. Bourne, S.; Koch, K. R. J. Chem. Soc., Dalton Trans. 1993, 13, 2071-2072.
https://doi.org/10.1039/DT9930002071

[3]. Koch, K. R.; Wang, Y.; Coetzee, A. J. Chem. Soc., Dalton Trans. 1999, 6, 1013-1016.
https://doi.org/10.1039/a809543d

[4]. Che, D. J.; Li, G.; Yao, X. L.; Wu, Q. J.; Wang, W. L.; Zhu, Y. J. Organometal. Chem. 1999, 584(1), 190-196.
https://doi.org/10.1016/S0022-328X(99)00138-2

[5]. Kemp, G.; Roodt, A.; Purcell, W.; Koch, K. R. J. Chem. Soc., Dalton Trans. 1997, 23, 4481-4484.
https://doi.org/10.1039/a705887j

[6]. Nkabyo, H. A.; Procacci, B.; Duckett, S. B.; Koch, K. R. Dalton Trans. 2019, 48(46), 17241-17251
https://doi.org/10.1039/C9DT03672E

[7]. Arslan, H.; Duran, N.; Borekci, G.; Koray Ozer, C.; Akbay, C. Molecules 2009, 14(1), 519-527.
https://doi.org/10.3390/molecules14010519

[8]. Arslan, H.; Flörke, U.; Külcü, N. J. Chem. Crystallog. 2003, 33(12), 919-924.
https://doi.org/10.1023/A:1027429814989

[9]. Rauf, M. K.; Imtiaz-ud-Din; Badshah, A.; Gielen, M.; Ebihara, M.; Vos, D. de; Ahmed, S. J. Inorg. Biochem. 2009, 103(8), 1135-1144.
https://doi.org/10.1016/j.jinorgbio.2009.05.014

[10]. Nordin, N. A.; Chai, T. W.; Tan, B. L.; Choi, C. L.; Abd Halim, A. N.; Hussain, H.; Ngaini, Z. J. Chem. 2017, 2017, 1-7.
https://doi.org/10.1155/2017/2378186

[11]. Saeed, S.; Rashid, N.; Ali, M.; Hussain, R. Eur. J. Chem. 2010, 1(3), 200-205.
https://doi.org/10.5155/eurjchem.1.3.200-205.120

[12]. Yang, W.; Liu, H.; Li, M.; Wang, F.; Zhou, W.; Fan, J. J. Inorg. Biochem. 2012, 116, 97-105.
https://doi.org/10.1016/j.jinorgbio.2012.08.001

[13]. del Campo, R.; Criado, J. J.; Garcia, E.; Hermosa, M. R.; Jimenez-Sanchez, A.; Manzano, J. L.; Monte, E.; Rodriguez-Fernandez, E.; Sanz, F. J. Inorg. Biochem. 2002, 89(1-2), 74-82.
https://doi.org/10.1016/S0162-0134(01)00408-1

[14]. Ramadas, K.; Suresh, G.; Janarthanan, N.; Masilamani, S. Pestic. Sci. 1998, 52(2), 145-151.
https://doi.org/10.1002/(SICI)1096-9063(199802)52:2<145::AID-PS677>3.0.CO;2-J

[15]. Weiqun, Z.; Wen, Y.; Liqun, X.; Xianchen, C. J. Inorg. Biochem. 2005, 99(6), 1314-1319.
https://doi.org/10.1016/j.jinorgbio.2005.03.004

[16]. Wu, J.; Shi, Q.; Chen, Z.; He, M.; Jin, L.; Hu, D. Molecules 2012, 17(5), 5139-5150.
https://doi.org/10.3390/molecules17055139

[17]. Saeed, S.; Rashid, N.; Ali, M.; Hussain, R.; Jones, P. G. Eur. J. Chem. 2010, 1(3), 221-227.
https://doi.org/10.5155/eurjchem.1.3.221-227.124

[18]. Perez, H.; O'Reilly, B.; Plutin, A. M.; Martinez, R.; Duran, R.; Collado, I. G.; Mascarenhas, Y. P. J. Coord. Chem. 2011, 64(16), 2890-2898.
https://doi.org/10.1080/00958972.2011.608426

[19]. Kulakov, I. V.; Nurkenov, O. A.; Akhmetova, S. B.; Seidakhmetova, R. B.; Zhambekov, Z. M. Pharm. Chem. J. 2011, 45(1), 15-18.
https://doi.org/10.1007/s11094-011-0551-9

[20]. Hallur, G.; Jimeno, A.; Dalrymple, S.; Zhu, T.; Jung, M. K.; Hidalgo, M.; Isaacs, J. T.; Sukumar, S.; Hamel, E.; Khan, S. R. J. Med. Chem. 2006, 49(7), 2357-2360.
https://doi.org/10.1021/jm051261s

[21]. Rao, X. P.; Wu, Y.; Song, Z. Q.; Shang, S. B.; Wang, Z. D. Med. Chem. Res. 2010, 20(3), 333-338.
https://doi.org/10.1007/s00044-010-9303-8

[22]. Peng, H.; Liang, Y.; Chen, L.; Fu, L.; Wang, H.; He, H. Bioorg. Med. Chem. Lett. 2011, 21(4), 1102-1104.
https://doi.org/10.1016/j.bmcl.2010.12.130

[23]. Saeed, S.; Rashid, N.; Jones, P. G.; Ali, M.; Hussain, R. Eur. J. Med. Chem. 2010, 45(4), 1323-1331.
https://doi.org/10.1016/j.ejmech.2009.12.016

[24]. Yaseen, S.; Rauf, M. K.; Zaib, S.; Badshah, A.; Tahir, M. N.; Ali, M. I.; Imtiaz-ud-Din; Shahid, M.; Iqbal, J. Inorg. Chim. Acta 2016, 443, 69-77.
https://doi.org/10.1016/j.ica.2015.12.027

[25]. Burgeson, J. R.; Moore, A. L.; Boutilier, J. K.; Cerruti, N. R.; Gharaibeh, D. N.; Lovejoy, C. E.; Amberg, S. M.; Hruby, D. E.; Tyavanagimatt, S. R.; Allen, R. D.; Dai, D. Bioorg. Med. Chem. Lett. 2012, 22(13), 4263-4272.
https://doi.org/10.1016/j.bmcl.2012.05.035

[26]. Williams, R. H.; Frame, E. G. Bull. Johns Hopkins Hosp. 1945, 77, 314-328.

[27]. Madan, V. K.; Taneja, A. D. Indian Chem. Soc. 1991, 68, 471-472.

[28]. Dziduch, K.; Kołodziej, P.; Paneth, A.; Bogucka-Kocka, A.; Wujec, M. Molecules 2020, 25(12), 2770.
https://doi.org/10.3390/molecules25122770

[29]. Schroeder, D. C. Thioureas. Chem. Rev. 1955, 55(1), 181-228.
https://doi.org/10.1021/cr50001a005

[30]. Zhang, J. F.; Xu, J. Y.; Wang, B. L.; Li, Y. X.; Xiong, L. X.; Li, Y. Q.; Ma, Y.; Li, Z. M. J. Agric. Food Chem. 2012, 60(31), 7565-7572.
https://doi.org/10.1021/jf302446c

[31]. Kea, S.Y.; Xue, S. J. Arkivoc 2006, 2006(10), 63-68.
https://doi.org/10.3998/ark.5550190.0007.a08

[32]. Limban, C.; Vasile, A.; Chirita, I.C.; Caproiu, M. Rev. De Chim. 2010, 61, 946-950.

[33]. Abosadiya, H. M. Eur. J. Chem. 2020, 11(2), 156-159.
https://doi.org/10.5155/eurjchem.11.2.156-159.1981

[34]. Hu, J. H.; Fan, X. H.; Du, X. L.; Wei, T. B. Phosph. Sulfur Silicon Relat. Elem. 2010, 185(12), 2558-2562.
https://doi.org/10.1080/10426501003752187

[35]. Gunasekaran, N.; Remya, N.; Radhakrishnan, S.; Karvembu, R. J. Coord. Chem. 2011, 64(3), 491-501.
https://doi.org/10.1080/00958972.2010.548007

[36]. Gunasekaran, N.; Karvembu, R. Inorg. Chem. Commun. 2010, 13(8), 952-955.
https://doi.org/10.1016/j.inoche.2010.05.004

[37]. Gunasekaran, N.; Jerome, P.; Ng, S. W.; Tiekink, E. R. T.; Karvembu, R. J. Mol. Catal. A: Chem. 2012, 353-354, 156-162.
https://doi.org/10.1016/j.molcata.2011.11.019

[38]. Gunasekaran, N.; Ramesh, P.; Ponnuswamy, M. N. G.; Karvembu, R. Dalton Trans. 2011, 40(46), 12519-12516.
https://doi.org/10.1039/c1dt10628g

[39]. Tzeng, Z. H.; Chen, H. Y.; Reddy, R. J.; Huang, C. T.; Chen, K. Tetrahedron 2009, 65(15), 2879-2888.
https://doi.org/10.1016/j.tet.2009.02.022

[40]. Hasan, S.; Hamedan, N. A.; Razali, A. A. A.; Uyup, N. H.; Zaki, H. M. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 172, 012050.
https://doi.org/10.1088/1757-899X/172/1/012050

[41]. Hamedan, N. A.; Hasan, S.; Zaki, H. M.; Alias, N. Z. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 172, 012038.
https://doi.org/10.1088/1757-899X/172/1/012038

[42]. Chen, H. L.; Guo, Z. F.; Lu, Z. Org. Lett. 2012, 14 (19), 5070-5073.
https://doi.org/10.1021/ol302313x

[43]. Gemili, M.; Nural, Y.; Keles, E.; Aydiner, B.; Seferoglu, N.; Sahin, E.; Sari, H.; Seferoglu, Z. J. Mol. Liquids 2018, 269, 920-932.
https://doi.org/10.1016/j.molliq.2018.08.054

[44]. Zhang, Y. M.; Cao, C.; Wei, W.; Xie, T. B. Chin. J. Chem. 2007, 25(5), 709-713.
https://doi.org/10.1002/cjoc.200790133

[45]. Zhang, Y.; Qin, J.; Lin, Q.; Wei, T. J. Fluorine Chem. 2006, 127(9), 1222-1227.
https://doi.org/10.1016/j.jfluchem.2006.06.018

[46]. Hu, S.; Guo, Y.; Xu, J.; Shao, S. Spectrochim. Acta A 2009, 72(5), 1043-1046.
https://doi.org/10.1016/j.saa.2008.12.042

[47]. Habtu, M. M.; Bourne, S. A.; Koch, K. R.; Luckay, R. C. New J. Chem. 2006, 30(8), 1155.
https://doi.org/10.1039/b603802f

[48]. Muhl, P.; Gloe, K.; Dietze, F.; Hoyer, E.; Beyer, L. Z. Chem. 2010, 26(3), 81-94.
https://doi.org/10.1002/zfch.19860260302

[49]. Luckay, R. C.; Mebrahtu, F.; Esterhuysen, C.; Koch, K. R. Inorg. Chem. Commun. 2010, 13(4), 468-470.
https://doi.org/10.1016/j.inoche.2010.01.010

[50]. Luckay, R. C.; Sheng, X.; Strasser, C. E.; Raubenheimer, H. G.; Safin, D. A.; Babashkina, M. G.; Klein, A. Dalton Trans. 2009, 39, 8227.
https://doi.org/10.1039/b910650b

[51]. Schuster, M.; Schwarzer, M. Anal. Chim. Acta 1996, 328(1), 1-11.
https://doi.org/10.1016/0003-2670(96)00091-8

[52]. Mautjana, A. N.; Miller, J. D. S.; Gie, A.; Bourne, S. A.; Koch, K. R. Dalton Trans. 2003, 10, 1952-1960.
https://doi.org/10.1039/B211885H

[53]. König, K. H.; Schuster, M.; Schneeweis, G.; Steinbrech, B. Z. Anal. Chem. 1984, 319(1), 66-69.
https://doi.org/10.1007/BF00476232

[54]. Bozkurt, S.; Gumus, I.; Arslan, H. J. Organometal. Chem. 2019, 884, 66-76.
https://doi.org/10.1016/j.jorganchem.2019.01.015

[55]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Res. Chem. Intermed. 2018, 45(2), 169-198.
https://doi.org/10.1007/s11164-018-3596-5

[56]. Binzet, G.; Turunc, E.; Flörke, U.; Külcü, N.; Arslan, H. J. Chem. 2018, 2018, 1-8.
https://doi.org/10.1155/2018/6108242

[57]. Solmaz, U.; Gumus, I.; Binzet, G.; Celik, O.; Balci, G. K.; Dogen, A.; Arslan, H. J. Coord. Chem. 2018, 71(2), 200-218.
https://doi.org/10.1080/00958972.2018.1427233

[58]. Binzet, G.; Gumus, I.; Dogen, A.; Flörke, U.; Kulcu, N.; Arslan, H. J. Mol. Struc. 2018, 1161, 519-529.
https://doi.org/10.1016/j.molstruc.2018.02.073

[59]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. J. Mol. Struc. 2018, 1157, 78-88.
https://doi.org/10.1016/j.molstruc.2017.12.017

[60]. Binzet, G.; Zeybek, B.; Kılıç, E.; Külcü, N.; Arslan, H. J. Chem. 2013, 2013, 1-7.
https://doi.org/10.1155/2013/201238

[61]. Binzet, G.; Kavak, G.; Külcü, N.; Özbey, S.; Flörke, U.; Arslan, H. J. Chem. 2013, 2013, 1-9.
https://doi.org/10.1155/2013/536562

[62]. Ozer, C. K.; Arslan, H.; Vanderveer, D.; Binzet, G. J. Coord. Chem. 2008, 62(2), 266-276
https://doi.org/10.1080/00958970802209623

[63]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42(2), 339-341.
https://doi.org/10.1107/S0021889808042726

[64]. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40(4), 786-790.
https://doi.org/10.1107/S0021889807029238

[65]. Sheldrick, G. M. Acta Crystallogr. C 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053273314026370

[66]. Spek, A. L. Acta Crystallogr. C 2015, 71(1), 9-18.
https://doi.org/10.1107/S2053229614024929

[67]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41(2), 466-470.
https://doi.org/10.1107/S0021889807067908

[68]. Arslan, H.; Külcü, N.; Flörke, U. Trans. Metal Chem. 2003, 28(7), 816-819.
https://doi.org/10.1023/A:1026064232260

[69]. Binzet, G.; Flörke, U.; Külcü, N.; Arslan, H. Eur. J. Chem. 2012, 3(2), 211-213.
https://doi.org/10.5155/eurjchem.3.2.211-213.594

[70]. Yang, L.; Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 9, 955-964.
https://doi.org/10.1039/B617136B

[71]. Gumus, I.; Ozer, C. K.; Vanderveer, D.; Arslan, H. Eur. J. Chem. 2016, 7(4), 416-420
https://doi.org/10.5155/eurjchem.7.4.416-420.1503

[72]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, 12, S1.
https://doi.org/10.1039/p298700000s1

[73]. Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97(6), 1354-1358.
https://doi.org/10.1021/ja00839a011

[74]. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry. University Science. p. 95. ISBN 978-1891389313, 2006.


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Ozer, C.; Binzet, G.; Arslan, H. Eur. J. Chem. 2020, 11(4), 319-323. doi:10.5155/eurjchem.11.4.319-323.2047
Ozer, C.; Binzet, G.; Arslan, H. Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex. Eur. J. Chem. 2020, 11(4), 319-323. doi:10.5155/eurjchem.11.4.319-323.2047
Ozer, C., Binzet, G., & Arslan, H. (2020). Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex. European Journal of Chemistry, 11(4), 319-323. doi:10.5155/eurjchem.11.4.319-323.2047
Ozer, Cemal, Gun Binzet, & Hakan Arslan. "Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex." European Journal of Chemistry [Online], 11.4 (2020): 319-323. Web. 28 May. 2023
Ozer, Cemal, Binzet, Gun, AND Arslan, Hakan. "Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex" European Journal of Chemistry [Online], Volume 11 Number 4 (31 December 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.11.4.319-323.2047


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2020, 11(4), 319-323 | doi: https://doi.org/10.5155/eurjchem.11.4.319-323.2047 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.