European Journal of Chemistry

Critical assessment of smart calculation-based spectroscopy versus chemometric-assisted methods: Application to combined antibiotic formulations

Crossmark


Main Article Content

Hind Ali Abdullatif
Adel Magdy Michael
Yossra Ahmed Trabik
Miriam Farid Ayad

Abstract

This work describes a comparative study of two multivariate chemometric and univariate spectrophotometric methods for the determination of a ternary drug mixture containing oxytetracycline HCl, bromhexine HCl, and lidocaine HCl. All methods show high sensitivity and similar linearity range. Meanwhile, the chemometric method has the advantage of higher accuracy, higher specificity and better regression parameters. The two spectrophotometric methods are constant multiplication coupled with spectrum subtraction and successive ratio subtraction coupled with spectrum subtraction while the chemometric method used partial least square and principal component regression models. In addition, a spiking technique was used to increase the concentration of bromhexine HCl in the dosage form, allowing its determination despite its low contribution. Methods were successfully applied in the dosage form Oxyclear® veterinary injection in pure powder as well as in its pharmaceutical formulation. Statistical comparison showed no significant difference between the developed methods and the reference method.


icon graph This Abstract was viewed 414 times | icon graph Article PDF downloaded 174 times

How to Cite
(1)
Abdullatif, H. A.; Michael, A. M.; Trabik, Y. A.; Ayad, M. F. Critical Assessment of Smart Calculation-Based Spectroscopy Versus Chemometric-Assisted Methods: Application to Combined Antibiotic Formulations. Eur. J. Chem. 2022, 13, 214-223.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. He, Y.; Yang, X.; Xia, J.; Zhao, L.; Yang, Y. Consumption of meat and dairy products in China: a review. Proc. Nutr. Soc. 2016, 75, 385-391.
https://doi.org/10.1017/S0029665116000641

[2]. Perry, B. D.; Randolph, T. F.; McDermott, J. J.; Sones, K. R.; Thornton, P. K. Investing in animal health research to alleviate poverty. Nairobi: ILRI, 2002.

[3]. Krčméry, V.; Grúnertová, H. On the mechanism of action of tetracycline antibiotics: V. The effect of oxytetracycline on the reduction of triphenyltetrazolium by staphylococci and some other microorganisms. Folia Microbiol. (Praha) 1964, 9, 222-231.
https://doi.org/10.1007/BF02875841

[4]. Wheeler, D. L.; Barrett, T.; Benson, D. A.; Bryant, S. H.; Canese, K.; Chetvernin, V.; Church, D. M.; DiCuccio, M.; Edgar, R.; Federhen, S.; Feolo, M.; Geer, L. Y.; Helmberg, W.; Kapustin, Y.; Khovayko, O.; Landsman, D.; Lipman, D. J.; Madden, T. L.; Maglott, D. R.; Miller, V.; Ostell, J.; Pruitt, K. D.; Schuler, G. D.; Shumway, M.; Sequeira, E.; Sherry, S. T.; Sirotkin, K.; Souvorov, A.; Starchenko, G.; Tatusov, R. L.; Tatusova, T. A.; Wagner, L.; Yaschenko, E. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2007, 36, D13-D21.
https://doi.org/10.1093/nar/gkm1000

[5]. Cartwright, A. The British pharmacopoeia, 1864 to 2014 medicines, international standards and the state; Routledge: London, England, 2016.

[6]. Williams, R. L. Official USP Reference Standards: Metrology concepts, overview, and scientific issues and opportunities. J. Pharm. Biomed. Anal. 2006, 40, 3-15.
https://doi.org/10.1016/j.jpba.2005.07.017

[7]. Donmez, O. A.; Bozdogan, A.; Kunt, G.; Div, Y. Spectrophotometric multicomponent analysis of a mixture of chlorhexidine hydrochloride and lidocaine hydrochloride in pharmaceutical formulation using derivative spectrophotometry and partial least-squares multivariate calibration. J. Anal. Chem. 2010, 65, 30-35.
https://doi.org/10.1134/S1061934810010077

[8]. El-Naem, O. A.; Saleh, S. S. Eco-friendly UPLC-MS/MS analysis of possible add-on therapy for COVID-19 in human plasma: Insights of greenness assessment. Microchem. J. 2021, 166, 106234.
https://doi.org/10.1016/j.microc.2021.106234

[9]. Yang L. L.; Yuan Y. S.; Tu X. D. Determination of bromhexine in plasma by gas chromatography-electron capture detection and pharmacokinetic studies. Se Pu 2000, 18, 543-545.

[10]. Omer, L. S.; Ali, R. J. Extraction-Spectrophotometric Determination of Lidocaine Hydrochloride in Pharmaceuticals. Int. J. Chem. 2017, 9, 49.
https://doi.org/10.5539/ijc.v9n4p49

[11]. Merey, H. A.; Ramadan, N. K.; Diab, S. S.; Moustafa, A. A. Green spectrophotometric methods for the determination of a binary mixture of lidocaine hydrochloride and cetylpyridinium chloride in the presence of dimethylaniline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 242, 118743.
https://doi.org/10.1016/j.saa.2020.118743

[12]. Rahbar, N.; Ramezani, Z.; Ghanavati, J. CuO-nanoparticles modified carbon paste electrode for square wave voltammetric determination of lidocaine: Comparing classical and Box-Behnken optimization methodologies. Chin. Chem. Lett. 2016, 27, 837-842.
https://doi.org/10.1016/j.cclet.2016.04.017

[13]. Saad, A. S.; Alamein, A. M. A. A.; Galal, M. M.; Zaazaa, H. E. Novel green potentiometric method for the determination of lidocaine hydrochloride and its metabolite 2, 6-dimethylaniline; Application to pharmaceutical dosage form and milk. Electroanalysis 2018, 30, 1689-1695.
https://doi.org/10.1002/elan.201800132

[14]. Furwanti, C.; Hendrajaya, K.; Indrayanto, G. Simultaneous HPLC Determination of Lidocaine Hydrochloride and Hexachlorophene in a Suppository Product. Media Pharm. Indones. (MPI) 2020, 3, 27-36.
https://doi.org/10.24123/mpi.v3i1.2455

[15]. Abdelwahab, N. S.; Ali, N. W.; Abdelkawy, M.; Emam, A. A. Validated RP-HPLC and TLC-densitometric methods for analysis of ternary mixture of cetylpyridinium chloride, chlorocresol and lidocaine in oral antiseptic formulation. J. Chromatogr. Sci. 2015, 54 (3), 318-325.
https://doi.org/10.1093/chromsci/bmv144

[16]. Marakkarakath, H. C.; Bannimath, G.; Raikar, P. P. Simultaneous estimation of lidocaine and prilocaine in topical cream by green gas chromatography. J. Appl. Pharm. Sci. 2019, 9, 66-72.
https://doi.org/10.7324/JAPS.2019.90310

[17]. Toral, M. I.; Sabay, T.; Orellana, S. L.; Richter, P. Determination of oxytetracycline from salmon muscle and skin by derivative spectrophotometry. J. AOAC Int. 2015, 98, 559-565.
https://doi.org/10.5740/jaoacint.14-027

[18]. Gajda, A.; Jablonski, A.; Bladek, T.; Posyniak, A. Oral fluid as a biological material for antemortem detection of oxytetracycline in pigs by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2017, 65, 494-500.
https://doi.org/10.1021/acs.jafc.6b05205

[19]. Ghorbel-Abid, I.; Belhassen, H. Development of a high- performance liquid chromatography with diode- array detection method using monolithic column for simultaneous determination of five tetracyclines residues in fish muscles. J. Food Nutr. Disord. 2016, 5, 5.
https://doi.org/10.4172/2324-9323.1000209

[20]. Yuan, F.; Zhao, H.; Wang, X.; Quan, X. Determination of oxytetracycline by a graphene-gold nanoparticle-based colorimetric aptamer sensor. Anal. Lett. 2017, 50, 544-553.
https://doi.org/10.1080/00032719.2016.1187160

[21]. Ghodsi, J.; Rafati, A. A.; Shoja, Y. First report on electrocatalytic oxidation of oxytetracycline by horse radish peroxidase: Application in developing a biosensor to oxytetracycline determination. Sens. Actuators B Chem. 2016, 224, 692-699.
https://doi.org/10.1016/j.snb.2015.10.091

[22]. International Conference on Harmonization, ICH; Validation of analytical procedures: Text and methodology Q2 (R1), 2005.

[23]. Martens, H.; Nas, T. Multivariate Calibration; John Wiley & Sons: Chichester, England, 1991.

[24]. Lotfy, H. M.; Hegazy, M. A.; Mowaka, S.; Mohamed, E. H. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 140, 495-508.
https://doi.org/10.1016/j.saa.2014.12.096

[25]. Lotfy, H. M.; Fayez, Y. M.; Tawakkol, S. M.; Fahmy, N. M.; Shehata, M. A. E.-A. Spectrophotometric resolution of the severely overlapped spectra of clotrimazole with dexamethasone in cream dosage form by mathematical manipulation steps. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 115-122.
https://doi.org/10.1016/j.saa.2018.04.072

[26]. Lotfy, H. M.; Tawakkol, S. M.; Fahmy, N. M.; Shehata, M. A. Successive spectrophotometric resolution as a novel technique for the analysis of ternary mixtures of pharmaceuticals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 313-323.
https://doi.org/10.1016/j.saa.2013.10.090

[27]. Lotfy, H. M.; Tawakkol, S. M.; Fahmy, N. M.; Shehata, M. A. A comparative study of novel spectrophotometric resolution techniques applied for pharmaceutical mixtures with partially or severely overlapped spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 937-952.
https://doi.org/10.1016/j.saa.2014.09.117

[28]. Lotfy, H. M.; Saleh, S. S.; Hassan, N. Y.; Salem, H. Computation of geometric representation of novel spectrophotometric methods used for the analysis of minor components in pharmaceutical preparations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 151, 628-643.
https://doi.org/10.1016/j.saa.2015.06.103

[29]. Newell, D. G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; van der Giessen, J.; Kruse, H. Food-borne diseases - The challenges of 20years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139, S3-S15.
https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

[30]. Michael, A. M.; Rezk, M. R.; Lotfy, H. M.; Shehata, M. A. Comparative Study of Multivariate and Univariate Determination of Zolmitriptan in the Presence of its Degradation products. Anal. Chem. Lett. 2015, 5, 73-84.
https://doi.org/10.1080/22297928.2015.1039942

[31]. Hassan, N. A comparative study of spectrophotometric methods versus chemometric methods; An application on a pharmaceutical binary mixture of ofloxacin and dexamethasone. Int. Res. J. Pure Appl. Chem. 2013, 3, 90-110.
https://doi.org/10.9734/IRJPAC/2013/3052

[32]. Brereton, R. G. Chemometrics: Data analysis for the laboratory and chemical plant; John Wiley & Sons: Chichester, England, 2003.

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).