

Synthesis and spectroscopic study of transition metal complexes of tridentate ligand formed by direct condensation of o-vanillin and 2-aminophenol: X-ray structural characterization of the zinc(II) complex
Amadou Gueye (1)





(1) Department of Chemistry, University Cheikh Anta Diop, Dakar 12500, Senegal
(2) Department of Chemistry, University Alioune DIOP, Bambey 21400, Senegal
(3) Laboratoire de Tectonique Moléculaire du Solide (UMR 7140), Chimie de la Matière Complexe, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67008 Strasbourg, France
(4) Laboratoire de Tectonique Moléculaire du Solide (UMR 7140), Chimie de la Matière Complexe, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67008 Strasbourg, France
(5) Department of Chemistry, University Cheikh Anta Diop, Dakar 12500, Senegal
(*) Corresponding Author
Received: 09 Jun 2018 | Revised: 08 Aug 2018 | Accepted: 28 Aug 2018 | Published: 31 Dec 2018 | Issue Date: December 2018
Abstract
The reactions of the Schiff base 2-((2-hydroxyphenylimino)methyl)-6-methoxyphenol (H2L), obtained by direct condensation of 2-aminophenol and 2-hydroxy-3-methoxybenzaldehyde, with some transition metal ions (Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)) afforded complexes of general formulae [M2(L)2(solvent)x] (M: Mn, Co, Ni, Cu or Zn; Solvent: DMSO or H2O). These compounds were characterized by elemental analysis, UV-Vis, IR, 1H- and 13C-NMR spectroscopies, molar conductivity and room temperature magnetic measurements. The structure of zinc(II) complex has been determined by X-ray crystallography. Crystal data for C32H34N2O8S2Zn2 (M =769.47 g/mol): Orthorhombic, space group Pbca (no. 61), a = 16.3176(7) Å, b = 9.1247(3) Å, c = 21.8274(10) Å, V = 3250.0(2) Å3, Z = 4, T = 173(2) K, μ(MoKα) = 1.658 mm-1, Dcalc = 1.573 g/cm3, 28116 reflections measured (4.5° ≤ 2Θ ≤ 60.3°), 4457 unique (Rint = 0.0409, Rsigma = 0.0371) which were used in all calculations. The final R1 was 0.0307(0.0466) and wR2 was 0.0649 (0.0701) (all data). The coordination sphere of the Zn center is best described as a trigonal bipyramid.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.9.4.281-286.1761
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


References
[1]. Novoa, N.; Justaud, F.; Hamon, P.; Roisnel, T.; Cador, O.; Guennic, B. L.; Manzur, C.; Carrillo, D.; Hamon, J. R. Polyhedron 2015, 86, 81-88.
https://doi.org/10.1016/j.poly.2014.05.032
[2]. Saha, S.; Jana, S.; Gupta, S.; Ghosh, A.; Nayek, H. P. Polyhedron 2016, 107, 183-189.
https://doi.org/10.1016/j.poly.2016.01.034
[3]. Akila, E.; Usharani, M.; Ramachandran, S.; Jayaseelan, P.; Velraj, G.; Rajavel, R. Arabian J. Chem. 2017, 10, S2950-S2960.
https://doi.org/10.1016/j.arabjc.2013.11.031
[4]. Minelli, M.; Hart-Cooper, W.; Sinnwell, J. G.; Blumberg, D. T.; Guzei, I. A.; Spencer, L. C.; Vazquez, J. P. S.; Peralta, A. S.; Torres, M. S. Polyhedron 2018, 146, 26-34.
https://doi.org/10.1016/j.poly.2018.02.017
[5]. Baran, P.; Boca, R.; Breza, M.; Elias, H.; Fuess, H.; Jorik, V.; Klement, R.; Svobodae, I. Polyhedron 2002, 21, 1561-1571.
https://doi.org/10.1016/S0277-5387(02)01020-3
[6]. Capan, A.; Urus, S.; Sonmez, M. J. Saudi Chem. Soc. 2018, 22(6), 757-766.
https://doi.org/10.1016/j.jscs.2017.12.007
[7]. Samper, K. G.; Marker, S. C.; Bayon, P.; MacMillan, S. N.; Keresztes, I.; Palacios, O.; Wilson, J. J. J. Inorg. Biochem. 2017, 177, 335-343.
https://doi.org/10.1016/j.jinorgbio.2017.07.035
[8]. Kavitha, P.; Saritha, M.; Reddy, K. L. Spectrochim. Acta A 2013, 102, 159-168.
https://doi.org/10.1016/j.saa.2012.10.037
[9]. Ali, O. A. M.; El-Medani, S. M.; Ahmed, D. A.; Nassar, D. A. J. Mol. Struct. 2014, 1074, 713-722.
https://doi.org/10.1016/j.molstruc.2014.05.035
[10]. Shabbir, M.; Akhter, Z.; Ashraf, A. R.; Ismail, H.; Habib, A.; Mirza, B. J. Mol. Struct. 2017, 1149, 720-726.
https://doi.org/10.1016/j.molstruc.2017.08.050
[11]. Panja, A. Polyhedron 2012, 43, 22-30.
https://doi.org/10.1016/j.poly.2012.05.041
[12]. Kose, M.; Goring, P.; Lucas, P.; Mckee, V. Inorg. Chim. Acta 2015, 435, 232-238.
https://doi.org/10.1016/j.ica.2015.07.010
[13]. Ebrahimipour, S. Y.; Abaszadeh, M.; Castro, J.; Seifi, M. Polyhedron 2014, 79, 138-150.
https://doi.org/10.1016/j.poly.2014.04.069
[14]. Briseno-Ortega, H.; Juarez-Guerra, L.; Rojas-Lima, S.; Mendoza-Huizar, L. H.; Vazquez-Garcia, R. A.; Farfan, N.; Arcos-Ramos, R.; Santillan, R.; Lopez-Ruiza, H. J. Mol. Struct. 2018, 1157, 119-126.
https://doi.org/10.1016/j.molstruc.2017.12.059
[15]. Dey, S. K.; Mukherjee, A. Coord. Chem. Rev. 2016, 310, 80-115.
https://doi.org/10.1016/j.ccr.2015.11.002
[16]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726
[17]. Sheldrick, G. M. Acta Cryst. A 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370
[18]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218
[19]. Gao, B.; Zhang, D.; Li, Y. Opt. Mater. (Amsterdam, Neth. ) 2018, 77, 77-86.
[20]. Barfeie, H.; Grivani, G.; Eigner, V.; Dusek, M.; Khalaji, A. D. Polyhedron 2018, 146, 19-25.
https://doi.org/10.1016/j.poly.2018.02.012
[21]. Sedighipoor, M.; Kianfar, A. H.; Sabzalian, M. R.; Abyar, F. Spectrochim. Acta A 2018, 198, 38-50.
https://doi.org/10.1016/j.saa.2018.02.050
[22]. Egekenze, R. N.; Gultneh, Y.; Butcher, R. Inorg. Chim. Acta 2018, 478, 232-242.
https://doi.org/10.1016/j.ica.2018.01.027
[23]. Yousef, T. A.; Alduaij, O. K.; Ahmed, S. F.; El-Reash, G. M. A.; El-Gammal, O. A. J. Mol. Struct. 2016, 1119, 351-364.
https://doi.org/10.1016/j.molstruc.2016.04.033
[24]. Tserkezidou, C.; Hatzidimitriou, A. G.; Psomas, G. Polyhedron 2016, 117, 184-192.
https://doi.org/10.1016/j.poly.2016.05.044
[25]. Bibi, S.; Mohamad, S.; Manan, N. S. A.; Ahmad, J.; Kamboh, M. A.; Khor, S. M.; Yamin, B. M.; Halim, S. N. A. J. Mol. Struct. 2017, 1141, 31-38.
https://doi.org/10.1016/j.molstruc.2017.03.072
[26]. Kane, C. H.; Tinguiano, D.; Tamboura, F. B.; Thiam, I. E.; Barry, A. H.; Gaye, M.; Retailleau; P. Bull. Chem. Soc. Ethiop. 2016, 30, 101-110.
[27]. Hasnan, M. M. I. M.; Abdullah, N.; Said, S. M.; Salleh, M. F. M.; Hussin, S. A. M.; Shah, N. M. Electrochim. Acta 2018, 261, 330-339.
https://doi.org/10.1016/j.electacta.2017.12.145
[28]. Ammar, R. A.; Alaghaz, A. N. M. A.; Zayed, M. E.; Al-Bedair, L. A. J. Mol. Struct. 2017, 1141, 368-381.
https://doi.org/10.1016/j.molstruc.2017.03.080
[29]. Seals, W.; Arman, H.; Batha, G.; Musie, G. T. Inorg. Chim. Acta 2018, 448, 16-25.
https://doi.org/10.1016/j.ica.2016.04.008
[30]. Jana, N. C.; Brandao, P.; Saha, A.; Panja, A. Polyhedron 2017, 138, 31-36.
https://doi.org/10.1016/j.poly.2017.09.002
[31]. Thompson, L. K.; Mandal, S. K.; Tandon, S. S.; Bridson, J. N.; Park, M. K. Inorg. Chem. 1996, 35, 3117-3125.
https://doi.org/10.1021/ic9514197
[32]. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0
[33]. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
https://doi.org/10.1039/DT9840001349
[34]. Bhattacharyya, A.; Sen, S.; Harms, K.; Chattopadhyay, S. Polyhedron 2015, 88, 156-163.
https://doi.org/10.1016/j.poly.2014.12.018
[35]. Azam, M.; Al-Resayes, S. I. J. Mol. Struct. 2016, 1107, 77-81.
https://doi.org/10.1016/j.molstruc.2015.11.017
[36]. Fliedel, C.; Rosa, V.; Alves, F. M.; Martins, A. M.; Aviles, T.; Dagorne, S. Dalton Trans. 2015, 44, 12376-12387.
https://doi.org/10.1039/C5DT00458F
[37]. Parrilha, G. L.; Vieira, R. P.; Rebolledo, A. P.; Mendes, I. C.; Lima, L. M.; Barreiro, E. J.; Piro, O. E.; Castellano, E. E.; Beraldo, H. Polyhedron 2011, 30, 1891-1898.
https://doi.org/10.1016/j.poly.2011.04.024
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.9.4.281-286.1761

















European Journal of Chemistry 2018, 9(4), 281-286 | doi: https://doi.org/10.5155/eurjchem.9.4.281-286.1761 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.