European Journal of Chemistry 2021, 12(2), 159-164 | doi: https://doi.org/10.5155/eurjchem.12.2.159-164.2074 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N'-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N',O}copper(II) perchlorate


Moussa Faye (1) orcid , Mouhamadou Moustapha Sow (2) orcid , Papa Aly Gaye (3) orcid , Moussa Dieng (4) orcid , Mohamed Gaye (5,*) orcid

(1) Department of Chemistry, UFR SATIC, University Alioune Diop, Bambey, 21400, Senegal
(2) Department of Chemistry, UFR SATIC, University Alioune Diop, Bambey, 21400, Senegal
(3) Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
(4) Department of Chemistry, UFR SATIC, University Alioune Diop, Bambey, 21400, Senegal
(5) Department of Chemistry, University Cheikh Anta Diop, Dakar, 10700, Senegal
(*) Corresponding Author

Received: 20 Jan 2021 | Revised: 05 Apr 2021 | Accepted: 17 Apr 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


Complexes of Co(II), [Co(C26H24N8O2)]·(ClO4)2·(H2O)2 (1), and Cu(II), [Cu(C26H23N8O2)]·(ClO4) (2), have been synthesized. The prepared two compounds were characterized by elemental analysis, infrared and their structures were determined by single-crystal X-ray diffraction. The compound 1 crystallizes in the triclinic space group P-1 with the following unit cell parameters: a = 8.880 (5) Å, b = 10.529 (5) Å, c = 18.430 (5) Å, α = 99.407 (5)°, β = 102.174 (5)°, γ = 100.652 (5)°, V = 1618.2 (13) Å3, Z = 2, T = 293(2), μ(MoKα) = 0.77 mm-1, Dcalc = 1.582 g/cm3, 16135 reflections measured (5.050° ≤ 2q ≤ 59.152°), 7648 unique, Rint = 0.034 which were used in all calculations. The final R1 was 0.066 (I ≥ 2σ(I)) and wR2 was 0.22 (all data). The compound 2 crystallizes in the monoclinic space group P21/c with the following unit cell parameters : a = 11.652 (5) Å, b = 16.540 (5) Å, c = 14.512 (5) Å, β = 93.495 (5)°, V = 2791.6 (18) Å3, Z = 4, T = 293(2), μ(MoKα) = 1.05 mm-1, Dcalc = 1.768 g/cm3, 15592 reflections measured (5.624° ≤ 2θ ≤ 58.804°), 6630 unique, Rint = 0.025 which were used in all calculations. The final R1 was 0.050 (I ≥ 2σ(I)) and wR2 was 0.144 (all data). In both complexes, the ligand acts in a tridentate fashion. In the structure of the mononuclear complex 1, the Co(II) cation is coordinated by two ligand molecules. The basal plane around the Co(II) cation is occupied by two pyridine nitrogen atoms and two carbonyl oxygen atoms. Two imino nitrogen atoms occupy the apical positions of the distorted square-pyramidal geometry. The mononuclear 2 consists of a Cu(II) coordinated by one ligand and one monodeprotonated ligand molecule. The metal center lies in a distorted square bipyramidal environment. The basal plane around the Cu(II) is occupied by two pyridine nitrogen atoms and two carbonyl oxygen atoms, the apical position being occupied by the two imino nitrogen atoms.


Keywords


Cobalt(II); Copper(II); Perchlorate; 2-Acetyl pyridine; Nicotinic hydrazide

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.159-164.2074

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 241 times | icon graph PDF Article downloaded 52 times


References


[1]. Koivusalo, L.; Karvinen, J.; Sorsa, E.; Jönkkäri, I.; Väliaho, J.; Kallio, P.; Ilmarinen, T.; Miettinen, S.; Skottman, H.; Kellomäki, M. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 85, 68-78.
https://doi.org/10.1016/j.msec.2017.12.013

[2]. Uppal, G.; Bala, S.; Kamboj, S.; Saini, M. Pharma Chem. 2011, 3, 250-268.

[3]. Cukierman, D. S.; Pinheiro, A. B.; Castiñeiras-Filho, S. L. P.; da Silva, A. S. P.; Miotto, M. C.; De Falco, A.; de P. Ribeiro, T.; Maisonette, S.; da Cunha, A. L. M. C.; Hauser-Davis, R. A.; Landeira-Fernandez, J.; Aucélio, R. Q.; Outeiro, T. F.; Pereira, M. D.; Fernández, C. O.; Rey, N. A. J. Inorg. Biochem. 2017, 170, 160-168.
https://doi.org/10.1016/j.jinorgbio.2017.02.020

[4]. Sanford, A. G.; Schulze, T. T.; Potluri, L. P.; Watson, G. F.; Darner, E. B.; Zach, S. J.; Hemsley, R. M.; Wallick, A. I.; Warner, R. C.; Charman, S. A.; Wang, X.; Vennerstrom, J. L.; Davis, P. H. Int. J. Parasitol. Drugs Drug Resist. 2018, 8 (3), 488-492.
https://doi.org/10.1016/j.ijpddr.2018.11.001

[5]. Zaky, R. R.; Ibrahim, K. M.; Gabr, I. M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 81 (1), 28-34.

[6]. Wu, Y.; Ding, X.; Ding, L.; Zhang, Y.; Cui, L.; Sun, L.; Li, W.; Wang, D.; Zhao, Y. Eur. J. Med. Chem. 2018, 158, 247-258.
https://doi.org/10.1016/j.ejmech.2018.09.004

[7]. Casanova, B. B.; Muniz, M. N.; de Oliveira, T.; de Oliveira, L. F.; Machado, M. M.; Fuentefria, A. M.; Gosmann, G.; Gnoatto, S. C. B. Molecules 2015, 20 (5), 9229-9241.
https://doi.org/10.3390/molecules20059229

[8]. Yang, Z.; Li, P.; Gan, X. Molecules 2018, 23 (7), 1798.
https://doi.org/10.3390/molecules23071798

[9]. Noma, S. A. A.; Erzengin, M.; Tunç, T.; Balcıoğlu, S. J. Mol. Struct. 2020, 1205 (127550), 127550.
https://doi.org/10.1016/j.molstruc.2019.127550

[10]. Chakraborty, J.; Thakurta, S.; Pilet, G.; Luneau, D.; Mitra, S. Polyhedron 2009, 28 (4), 819-825.
https://doi.org/10.1016/j.poly.2008.12.018

[11]. Patel, A. K.; Jadeja, R. N.; Butcher, R. J.; Kesharwani, M. K.; Kästner, J.; Muddassir, M. Polyhedron 2021, 195 (114969), 114969.
https://doi.org/10.1016/j.poly.2020.114969

[12]. Patel, R. N.; Shukla, K. K.; Singh, A.; Choudhary, M.; Chauhan, U. K.; Dwivedi, S. Inorg. Chim. Acta 2009, 362 (14), 4891-4898.
https://doi.org/10.1016/j.ica.2009.07.037

[13]. Recio Despaigne, A. A.; Da Silva, J. G.; Do Carmo, A. C. M.; Piro, O. E.; Castellano, E. E.; Beraldo, H. J. Mol. Struct. 2009, 920 (1-3), 97-102.
https://doi.org/10.1016/j.molstruc.2008.10.025

[14]. Andjelković, K.; Ivanović, I.; Niketić, S. R.; Prelesnik, B.; Leovac, V. M. Polyhedron 1997, 16 (24), 4221-4228.
https://doi.org/10.1016/S0277-5387(97)00265-9

[15]. Gebretsadik, T.; Yang, Q.; Wu, J.; Tang, J. Coord. Chem. Rev. 2021, 431 (213666), 213666.
https://doi.org/10.1016/j.ccr.2020.213666

[16]. Sethi, S.; Panigrahi, R.; Paul, A. K.; Mallik, B. S.; Parhi, P.; Das, P. K.; Behera, N. Dalton Trans. 2020, 49 (30), 10603-10612.
https://doi.org/10.1039/D0DT02014A

[17]. Murugan, K.; Vijayapritha, S.; Kavitha, V.; Viswanathamurthi, P. Polyhedron 2020, 190 (114737), 114737.
https://doi.org/10.1016/j.poly.2020.114737

[18]. Makhlouf, M. M.; Alburaih, H. A.; Shehata, M. M.; Adam, M. S. S.; Mostafa, M. M.; El-Denglawey, A. J. Phys. Chem. Solids 2021, 151 (109817), 109817.
https://doi.org/10.1016/j.jpcs.2020.109817

[19]. Alagesan, M.; Bhuvanesh, N. S. P.; Dharmaraj, N. Dalton Trans. 2013, 42 (19), 7210-7223.
https://doi.org/10.1039/c3dt50371b

[20]. Cao, W.; Liu, Y.; Zhang, T.; Jia, J. Polyhedron 2018, 147, 62-68.
https://doi.org/10.1016/j.poly.2018.03.012

[21]. Bhaskar, R. S.; Ladole, C. A.; Salunkhe, N. G.; Barabde, J. M.; Aswar, A. S. Arab. J. Chem. 2020, 13 (8), 6559-6567.
https://doi.org/10.1016/j.arabjc.2020.06.012

[22]. Joshi, N.; Gore, V.; Tekale, S.; Rajani, D.; Bembalkar, S.; Pawar, R. Lett. Appl. NanoBioScience 2021, 10, 2056-2062.
https://doi.org/10.33263/LIANBS102.20562062

[23]. Cindrić, M.; Bjelopetrović, A.; Pavlović, G.; Damjanović, V.; Lovrić, J.; Matković-Čalogović, D.; Vrdoljak, V. New J Chem 2017, 41 (6), 2425-2435.
https://doi.org/10.1039/C6NJ03827A

[24]. Sylla-Gueye, R.; Thiam, I. E.; Orton, J.; Coles, S.; Gaye, M. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (5), 660-663.
https://doi.org/10.1107/S205698902000465X

[25]. Sy, A.; Dieng, M.; Thiam, I. E.; Gaye, M.; Retailleau, P. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69 (2), m108.
https://doi.org/10.1107/S1600536813001281

[26]. Tamboura, F. B.; Diouf, O.; Barry, A. H.; Gaye, M.; Sall, A. S. Polyhedron 2012, 43 (1), 97-103.
https://doi.org/10.1016/j.poly.2012.06.025

[27]. Gueye, A.; Tamboura, F.B.; Sy, A.; Gaye, M.; Gruber, N.; Jouaiti, A. IOSR J. Appl. Chem. 2019, 12, 24-30.

[28]. Seck, T. M.; Faye, F. D.; Gaye, A. A.; Thiam, I. E.; Diouf, O.; Gaye, M.; Retailleau, P. Eur. J. Chem. 2020, 11 (4), 285-290.
https://doi.org/10.5155/eurjchem.11.4.285-290.2023

[29]. Seck, T. M.; Gaye, P. A.; Diouf, O.; Thiam, I. E.; Gaye, M. Chem. Afr. 2020, 3 (4), 949-954.
https://doi.org/10.1007/s42250-020-00140-9

[30]. Zhang, H.; Lin, S.-Y.; Xue, S.; Wang, C.; Tang, J. Dalton Trans. 2014, 43, 6262-6268.
https://doi.org/10.1039/C3DT53366B

[31]. Sheldrick, G. M. SHELXTL Version 5.10; Bruker AXS Inc: Madison, Wisconsin, USA, 1997.

[32]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053273314026370

[33]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[34]. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45 (4), 849-854.
https://doi.org/10.1107/S0021889812029111

[35]. Seck, T. M.; Sy, A.; Lo, D.; Gaye, P. A.; Sall, M. L.; Diouf, O.; Diaw, M.; Gaye, M. Open J. Inorg. Chem. 2019, 09 (04), 35-52.
https://doi.org/10.4236/ojic.2019.94004

[36]. Singh, A. K.; Pandey, O. P.; Sengupta, S. K. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 393-399.
https://doi.org/10.1016/j.saa.2013.04.045

[37]. Roy, T. G.; Hazari, S. K. S.; Miah, H. A.; Gupta, S. K. D.; Roy, P. G.; Behrens, U.; Rehder, D. Inorg. Chim. Acta 2014, 415, 124-131.

[38]. Geary, W. J. Coord. Chem. Rev. 1971, 7 (1), 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0

[39]. Jyothi, N.; Ganji, N.; Daravath, S.; Shivaraj. J. Mol. Struct. 2020, 1207 (127799), 127799.
https://doi.org/10.1016/j.molstruc.2020.127799

[40]. Roztocki, K.; Matoga, D.; Nitek, W. Inorg. Chim. Acta 2016, 448, 86-92.
https://doi.org/10.1016/j.ica.2016.03.045

[41]. Cocu, M.; Bulhac, I.; Coropceanu, E.; Melnic, E.; Shova, S.; Ciobanica, O.; Gutium, V.; Bourosh, P. J. Mol. Struct. 2014, 1063, 274-282.
https://doi.org/10.1016/j.molstruc.2014.01.084

[42]. Santiago, P. H. O.; Santiago, M. B.; Martins, C. H. G.; Gatto, C. C. Inorg. Chim. Acta 2020, 508 (119632), 119632.
https://doi.org/10.1016/j.ica.2020.119632


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Faye, M.; Sow, M.; Gaye, P.; Dieng, M.; Gaye, M. Eur. J. Chem. 2021, 12(2), 159-164. doi:10.5155/eurjchem.12.2.159-164.2074
Faye, M.; Sow, M.; Gaye, P.; Dieng, M.; Gaye, M. Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N'-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N',O}copper(II) perchlorate. Eur. J. Chem. 2021, 12(2), 159-164. doi:10.5155/eurjchem.12.2.159-164.2074
Faye, M., Sow, M., Gaye, P., Dieng, M., & Gaye, M. (2021). Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N'-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N',O}copper(II) perchlorate. European Journal of Chemistry, 12(2), 159-164. doi:10.5155/eurjchem.12.2.159-164.2074
Faye, Moussa, Mouhamadou Moustapha Sow, Papa Aly Gaye, Moussa Dieng, & Mohamed Gaye. "Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N'-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N',O}copper(II) perchlorate." European Journal of Chemistry [Online], 12.2 (2021): 159-164. Web. 27 Oct. 2021
Faye, Moussa, Sow, Mouhamadou, Gaye, Papa, Dieng, Moussa, AND Gaye, Mohamed. "Crystal structures of bis-{N-[1-(pyridin-2-yl-κN)ethylidene]nicotine hydrazide-κ2N’,O}cobalt(II)bis(perchlorate) dihydrate and bis-{N'-[1-(pyridin-2-yl-κN)ethylidene]nicotinohydrazide-κ2N',O}copper(II) perchlorate" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.159-164.2074

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 159-164 | doi: https://doi.org/10.5155/eurjchem.12.2.159-164.2074 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.